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A mathematical model of an ultrahigh voltage transmission line 
taking into account overhead ground wires 

 
 

Abstract. The development of a mathematical model of a three-phase ultrahigh voltage transmission line with two overhead ground wires is 
presented in the paper. The mathematical model is based on differential equations of state of a long line with partial derivatives in the matrix-vector 
form. The boundary conditions of the second kind (Neumann's conditions) are used, which enables obtaining functions of unknown coordinates of 
the overhead ground wires mode at the beginning and at the end of the voltage transmission line to solve the transmission line equation. Some 
results of computer simulations of transients during switching on and a single-phase short circuit of the line are presented in the form of 
corresponding graphic functions of its mode coordinates. 
 
Streszczenie. W artykule przedstawiono model matematyczny trójfazowej linii elektroenergetycznej ultra wysokiego napięcia z dwoma przewodami 
odgromowymi. Model matematyczny wykorzystuje równania różniczkowe o pochodnych cząstkowych elektromagnetycznej długiej linii w postaci 
macierzowo-wektorowej. Jako warunki brzegowe wykorzystano warunki drugiego rodzaju (warunki Neumanna), co z kolei pozwoliło obliczyć 
przebiegi napięcia i prądu na początku i na końcu linii elektroenergetycznej. Wyniki symulacji komputerowej stanów nieustalonych podczas 
załączania linii oraz zwarcia jednofazowego w jej końcu przedstawiono w postaci rysunków. (Model matematyczny linii przesyłowej wysokiego 
napięcia z uwzględnieniem napowietrznych przewodów uziemiających). 
 
Keywords: mathematical model, power line, overhead ground wires, high voltage, distributed parameters, long line equation. 
Słowa kluczowe: model matematyczny, linia energetyczna, przewody odgromowy, wysokie napięcie, parametry rozłożone, równania linii długiej. 
 
Introduction 

The paper concerns ultrahigh voltage transmission lines, 
which are the components of main electric power networks 
with a voltage of 220 kV and higher. One of the important 
factors to be considered is the peculiarities of transient 
electromagnetic processes during emergency and switching 
modes, due to the significant lengths and distribution of the 
parameters of such lines [1, 2, 3, 4]. The reproduction and 
analysis of these processes is an integral part of the design, 
planning, maintenance of the modes and the configuration 
of relay protection and controls. 

An effective way to study power lines is to use a 
mathematical simulation tool, which makes it possible not 
only to reproduce transient electromagnetic processes with 
high adequacy, but also to avoid the use of expensive field 
experiments. To obtain reliable results of power lines 
simulation, it is necessary to take into account as many 
factors of influence as possible, in particular, the mutual 
effects of overhead ground wires and power line phases on 
the coordinates of transient electromagnetic processes. 
Their reasonable consideration involves the presentation of 
ground wires and some appropriate elements of the 
mathematical model of a line. Work is in progress, in 
particular, to study direct lightning strikes and their impact 
on the operation of power transmission lines with grounded 
and ungrounded overhead wires [5, 6]. 

Another important factor that is overlooked is the 
simulation of the line as a system with distributed 
parameters, which is relevant for ultrahigh voltage class 
lines, since, due to significant lengths, they have wave 
processes that can be fully taken into account only by 
solving the transmission line equation [7]. Instead, such 
lines are considered as circular equivalent circuits. We 
cannot say that such an approach would be wrong, but it is 
clear that the physical essence of the very transmission line 
equation is lost here. This means that the problems are 
shifted from the field to the circular statement, thus reducing 
a priori the degree of adequacy of the line model, and 
hence the degree of adequacy of the model of the whole 
object. Thus, for example, in paper [8] a digital model of a 
400 kV transmission line in the EMTP-RV software package 
is developed and in [9] a model of an electrical network with 

power lines with overhead ground wires in the PSCAD 
software is presented. The lines there are considered in the 
form of circular equivalent circuits. What is more, there are 
works [10] in which the simulations are performed for a 
single-circuit equivalent circuit, i.e., a line is considered in a 
simplified single-phase version with no active resistances 
and conductivities, which also reduces the adequacy of the 
results of transient studies. 

Taking the above into account, our research objective 
is to develop an approach to developing a mathematical 
model of a long three-phase ultrahigh voltage transmission 
line with two overhead ground wires taking into account the 
peculiarities of the formation of boundary conditions for the 
study of electromagnetic processes in the natural 
coordinates of the line’s phases and wires. 

 
The presentation of basic data 

We propose to develop a mathematical model of a long 
three-phase ultrahigh voltage transmission line with two 
ground wires, taking into account the distribution of its 
parameters, based on differential equations of the state of a 
long line with partial derivatives in a matrix-vector form and 
using boundary conditions of the second kind (Neumann's 
conditions).  

The computational scheme of a real ultrahigh voltage 
line is presented in Fig. 1, which uses the conventional 
designations of its components and coordinates of the 
mode. As can be seen from Fig. 1, the ground wires 
(hereinafter wires T1, T2) are connected to each other at 
the end of the line and disconnected at its beginning, that is, 
they form an open circuit with grounding of the wire T2 at 
one point at the beginning of the line. Given that this paper 
will focus on the formation of boundary conditions for the 
equations of state of wires T1, T2, the three-phase 
transmission line will be considered symmetric with the 
same inherent and mutual parameters of split phases and 
wires and with given symmetric phase voltage systems of 
its beginning and end. The split phases are represented as 
single-wire ones with corresponding equivalent radii. That is 
why such a line can be considered as a five-wire one – 
cables T1, T2 and phases A, B, C. The computational 
scheme of the line adopted in this paper enables to obtain 
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the functions of the unknown coordinates of the ground wire 
mode at the beginning and at the end of the power 
transmission line, taking into account the peculiarities of 
their execution. 

 
Fig. 1. A computational scheme of a long transmission line with 
distributed parameters 

 
In our case, the coordinates of the mode are some 

vectors of unknown voltages relative to earth and currents 
of wires and phases of the line with the length l with 
distributed parameters as functions of independent 
arguments (variables) – distances x from the beginning of 
the line (0 ≤ x ≤ l) and time t (t ≥ 0): 

(1)               ( 1) ( 2) ( ) ( ) ( ), = , , , ,T T A B C

t
x t u u u u uu u ; 

(2)                  ( 1) ( 2) ( ) ( ) ( ), = , , , ,T T A B C

t
x t i i i i ii i . 

In [7, 11], it is noted that for a more optimal description 
of physical processes in long lines and for improved 
efficiency of implementing digital models, it is advisable to 
use the vector function of voltages (1) as a generalised 
coordinate of the mode. That is why to develop a 
mathematical model we will use the differential equation of 
the state of a second-order long line with partial derivatives 
in respect of the vector function of voltages (1), which in a 
matrix-vector form will look as follows:  

(3)           
2 2

1

2 2 tt x

    
       

u u u
LС Lg rС rgu ,  

where: r, L –square matrices of specific (per unit length) 
inherent and mutual contour parameters (active supports, 
inherent and mutual inductances) of the system of five 
independent contours of the wires and line phases – 
ground, respectively; g, C – square matrices of specific (per 
unit length) inherent and mutual nodal parameters (active 
conductivity and capacitance) of the system of five 
independent nodes of wires and line phases relative to the 
ground, respectively. 

To solve the equation (3), we propose to use boundary 
conditions of the second kind, in particular, the differential 
equation of state of a first-order long line with partial 
derivatives with regard to the change of the vector function 
of voltages (1) by argument x for time t, which in a matrix-
vector form will look as follows:  

(4)                            
x t

 
  
 

u i
L ri . 

Discretizing by step ∆x the argument x of equations (3), 
(4) using the method of straight lines with N nodes and 
employing the concept of the central derivative [12], we get 
the following for the j-th node of the line: 

(5)  
 

   1
1 12

1
2

j
j j j j j

d

dt x


 

 
      
  

v
LC u u u Lg rC v rgu ; 

(6) j
j

dt

d
v

u
 ,   






 


 


jjj
j

xdt

d
riuuL

i
11

1

2

1
, Nj ,...,1 . 

An analysis of equations (5), (6) shows that to find the 
voltages of the first u1 (j = 1) and the last uN (j = N) 
sampling nodes and currents in the first і1 and last іN 
discrete branches of the line, we must first find the unknown 
voltages in fictitious nodes u0 and uN+1.  

According to the assumptions made in our specific case, 
for the equations of state of the line phases we have 
boundary conditions of the first kind in the form of known 
(given) phase voltages of its beginning and its end (u1

(А), 
u1

(В), u1
(С), uEL

(А), uEL
(В), uEL

(С)). For the equation of the state of 
the wire T2 grounded at the beginning of the line, we also 
have one boundary condition of the first kind, u1

(T2) = 0.  
The situation is quite different for the equations of state 

of the wire T1, disconnected at the beginning of the line, 
and the wires Т1 and Т2, connected to each other at its end. 
Therefore, in our case, to form boundary conditions it is 
necessary to find voltages of fictitious nodes at the 
beginning of the line for the wire Т1 (u0

(T1)) and at its end – 
for wires Т1 (uN+1

(T1)) and Т2 (uN+1
(T2)). To this end, it is 

proposed to consider the first (at the beginning) and the last 
(at the end) discretes of the line in circular variants based 
on the corresponding straight Г-shaped equivalent circuits 
(hereinafter referred to as the straight Г-circuits). 

The boundary conditions for the equations of state of the 
T1 wire at the beginning of the line are determined 
according to the straight Г-circuit of the first discrete of the 
line, which for this wire is presented in Fig. 2 (only a 
fragment of the equivalent circuit of the first discrete of the 
Т1 wire is shown)  

 
Fig. 2. Straight equivalent Г-circuit of the first discrete of the wire T1 
at the beginning of the line 
 

Let us write down the equation according to Kirchhoff's 
first law for the first sampling node of the wire Т1 (Fig. 2): 

(7)                          ( 1) ( 1)
1 1 0T Тi i   , 

where: Δі1
(Т1) is the total leakage current from the wire Т1 to 

the wire Т2, phases A, B, C of the line and to ground Z, 
respectively.  

The total leakage current Δі1
(Т1) in (7) is calculated using 

the partial leakage currents as follows:  

(8) 
( 1, )

( 1) ( 1, ) 1
1, 1,1 1

2

Т mZ
Т Т m

T m T m
m T

du
i xg u xC

dt

 
     

 
 , =T2,A, B, C ,Z 

where: gT1,m, CT1,m are specific (per unit length) partial 
inherent and mutual active conductivities and capacitances 
between the wire Т1 and the wire Т2, phases A, B, C of the 
line and ground Z; u(Т1,m) – voltages between wire Т1 and 
wire Т2, phases A, B, C of the line and ground Z of the first 
sampling node of the line, respectively. 
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For the same first node, we separate from the second 
matrix-vector equation (6) the elementary equation of state 
of the wire Т1, which, taking into account the structure of 
the coordinate vector of the line mode accepted in (1), (2) 
and j = 1, will be expressed in the following coordinate 
form: 

(9)                   
( 1) 5 5

( ) ( )1
1, 1,0 2

1 1

1

2

Т
k k

k k
k k

di
u u

dt x  

 
       

   

 
5

( )
1, 1

1

k
k

k

K і


 ,      1, 2,3,4,5k  , 

where Λ = L–1; K = L–1×r; k – number of columns of 
matrices and rows of vectors. 

Next, we differentiate (7) and (8) over time, taking into 
account the initial conditions [11], and arrive at:  

(10)                         
( 1) ( 1)
1 1 0
T Тdi d i

dt dt


   ; 

(11)      
( 1) ( 1, )

( 1, )1 1
1, 1,1

2

Т Т mZ
Т m

T m T m
m T

d i dv
xg v xC

dt dt

 
    

 
 . 

Considering that  

(12) ( 1 ) ( 1) ( )Т ,m Т mu u u  , 
( 1 ) ( 1) ( )Т ,m T mdu du du

dt dt dt
  , 

( 1 ) ( 1) ( )Т ,m T mdv dv dv

dt dt dt
  , 

the equation (11) will look as follows: 

(13)  
( 1) ( 1) ( )

( 1) ( )1 1 1
1, 1,1 1

2

Т Т mZ
Т m

T m T m
m T

d i dv dv
x g v v C

dt dt dt

  
         

 . 

We apply (9) and (13) to the equation (10) and produce: 

(14)        
5 5 5

( ) ( ) ( )
1, 1, 1,0 2 1

1 1 1

1

2
k k k

k k k
k k k

u u K і
x   

 
        

    

 
( 1) ( )

( 1) ( ) 1 1
1, 1,1 1

2

0
Т mZ

Т m
T m T m

m T

dv dv
x g v v C

dt dt

  
          

 . 

When we apply (5) to the equation (14) (for the first 
sampling node (only for ground wire Т1)) and then derive 
from the expression the voltage of the fictitious node at the 
beginning of the line for ground wire Т1 (u0

(T1)), we obtain: 
(15) 

   
5 5

( ) ( )1
0 1, 1,2 0

1 211 11 11

2 1

2 2
k kТ

k k
k k

x
u u u

С P x  

            
   

 
5

( )
1, 1

1

k
k

k

K i


 
( )

( 1) ( ) 1
11 1, 1,1 1

2

mС
Т m

T m T m
m T

dv
x G v g v C

dt

  
         

  

 
 

5
( ) ( )

11 1, 1,1 22
1

1 k k
k k

k

xC Р i Р u
x 

        
  

 
   

5 5
( ) ( ) ( )

1, 1, 1,1 1 12
1 1

2 k k k
k k k

k k

Р u F v D u
x  

    
  , 

where Р = (LC)–1, D = Рrg, F = Р(Lg + rC), С11, G11 – the 
elements of matrices С and G, respectively. 

After analysing (15), we see that it also shows the 
voltages of fictitious nodes at the beginning of the line for 
the wire Т2 (u0

(T2)) and phases of the line (u0
(А), u0

(В), u0
(С)). 

We have already mentioned that the boundary conditions of 
the first kind are given here (voltages at the beginning of 

the line u1
(T2), u1

(А), u1
(В), u1

(С) have been specified), 
therefore, the unknown voltages for (15) can be easily 
found from the second equation in (6), if we formulate it for 
the first discrete node of the line.  

Since voltages at the beginning of the line for the 
ground wire Т2 and phase conductors are 

(16) ( 2)
1 0Тu  ,      ( ) ( ) ( )

m1 sin ω φm m mu U t  , m = A, B, C, 

their first and second derivatives in (15) will look like: 

(17)  ( ) ( ) ( )
m1 ω cos ω φm m mv U t  ,  

( )
2 ( ) ( )1

mω sin ω φ
m

m mdv
U t

dt
  . 

To avoid overloading the paper with mathematical 
derivations, we will not search for fictitious voltages at the 
end of the power line. In [13], based on the boundary 
conditions of the second kind, a universal expression for 
finding the voltage uN+1 in fictitious nodes at the end of the 
line is obtained. 

(18)  1 1 2N N EL N   u u u u ,  ( 1) ( 2) ( ) ( ) ( ), , , ,T T A B C
EL EL EL EL EL EL t

u u u u uu . 

(18) makes it possible to use a line model based on 
the transmission line equation autonomously in any 
network configuration, regardless of the circuit of their 
connection. However, in (18) there is an actual voltage at 
the end of the transmission line uEL, which is to be 
determined. In our case, we must determine the voltages of 
the wires (uEL

(Т1), uEL
(Т2)) which are connected to each other 

at the end of the line, since the phase voltages at the end 
of the line (uEL

(А), uEL
(В), uEL

(С)) are set. As the ground wires 
at the end of the line are connected to each other, then 
uEL

(Т1) = uEL
(Т2) = uEL

(Т). To find this voltage, let us consider 
the equivalent circuit of the last discrete sections of ground 
wires (Fig. 3). Here, we have traditionally used a straight 
equivalent Г-circuit of the elementary section of the line. 

 

 
Fig. 3. The straight equivalent Г-circuit of the last discretes of wires 
Т1 and Т2 at the end of the line 

 

From Fig. 3 we can write [11]: 

(19)          
( 1) ( 2)

( 1) ( 2)
T T

T T N N
N N

di di
i i

dt dt
     . 

Given that iN
(Z) = iN

(A) + iN
(B) + iN

(C), (iN
(Z) is the current 

in the ground of the last discrete branch), based on 
Kirchhoff's second law for the circuit (Fig. 3), we will write 
the equation for finding currents in the last discrete 
branches of ground wires. 

(20)     
( 1) ( )

( 1)
1,

20

1T mC
TN N

T mN
m T

di di
u x M

dt xL dt

   
        

  
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   ( 1) ( ) ( )
0

2

C
T m T

Z ZN N EL
m T

r r i r i u



      

 ; 

(21)    
( 2) ( )

( 2)
2,

10

1T nC
TN N

T nN
n T

di di
u x M

dt xL dt

   
        

  

   ( 2) ( ) ( )
0

1

C
T n T

Z ZN N EL
n T

r r i r i u



      

 , n = T1, A, B, C, 

where m, n – the names of ground wires or phase 
conductors. 

If we apply (20) and (21) it on the second expression in 
(19) and express the voltage of ground wires at the end of 
the line (uEL

(Т)), we produce: 

(22)  
( ),

( ) ( 2) ( 1)
1,

2, 1

1

2

mC C
T T T N

T mEL N N
m T n T

di
u u u x M

dt 

         
  

 
( )

( ) ( ) ( )
2, 2

n
A B CN

T n Z N N N
di

M r i i i
dt

         
.  

The currents in all the discrete branches of ground wires 
and phase conductors of the line can be found from the 
second equation (6).  

The following system of differential equations is subject 
to joint integration: (5), (6) including (1), (2), (15) – (18), 
(22). 

 
Computer simulation results 

Computer simulation is performed to study transient 
electromagnetic processes that take place in a symmetrical 
three-phase transmission line with two overhead ground 
wires (Fig. 1) during short circuits. The studies serve testing 
purposes in order to represent the adequate behaviour of 
the developed model in theoretical terms and to lay a real 
750 kV transmission line with a length of 476 km with the 
following specific parameters: r0F = 1.9ꞏ10-5 Om/m, r0T = 
= 4.28ꞏ10-4 Om/m, r0Z = 5ꞏ10-5 Om/m, L0F = 1.647ꞏ10-6 H/m, 
L0T = 2.4049ꞏ10-6 H/m, M0FF = 7.41ꞏ10-7 H/m, M0FT = 7.4ꞏ10-7 
H/m, M0TT = 7.05ꞏ10-7 H/m, g0F = 3.253ꞏ10-11 Sm/m, 
g0FF = g0FT = = 3.253ꞏ10-13 Sm/m, g0T ≈ 0, g0TТ ≈ 0, 
С0F = 0.8647ꞏ10-11 F/m, С0FF = 0.103ꞏ10-11 F/m, 
С0FT = 0.0723ꞏ10-11 F/m, С0T = = 0.3501ꞏ10-11 F/m, 
С0TT = 0.04162ꞏ10-11 F/m. 

The adopted values of the amplitudes and arguments of 
the phase voltages of the beginning and end of the line 
correspond to the normal steady-state mode of 
transmission of active power P in the range (0.55 – 0.65) of 
its natural value PC, namely: u1

(A) = 615 sin(ωt + 20º) kV, 
u1

(B) = 615 sin(ωt – 100º) kV, u1
(C) = 615 sin(ωt + 140º) kV, 

uEL
(A) = 598 sin(ωt + 4º) kV, uEL

(B) = 598 sin(ωt – 116º) kV, 
uEL

(C) = 598 sin(ωt + 124º) kV, ω = 314.15 s–1. 
To approximate real conditions, the simulation of line 

activation begins from the time t = 0 s, taking into account 
the possible phase-by-phase simultaneous switching on of 
switches at the beginning and at the end of the line. After 
entering the steady-state mode, at time t = 0.14 s, a single-
phase short circuit of phase А to ground s simulated at the 
end of the line.  

Fig. 4, 5 present the change in time of phase voltages at 
a distance of 23 km to the end of the line and phase 
currents at the end of the line (short-circuit currents), 
respectively. We can see that due to the simulation of 
controlled switching of circuit breakers, overvoltages during 
line activation are practically absent (Fig. 4). In normal 
steady-state mode, the amplitude values of the voltages are 

600 kV and in the steady-state short-circuit mode the 
voltage amplitude of phase A is 30 kV, while other phases 
remain virtually unchanged. 

When we analyse the transients of currents (Fig. 5), we 
see that after entering the steady-state mode, the currents 
acquire amplitude values of 1.36 kA. After a single-phase 
short circuit, the maximum values of current modules are: in 
phase А – 6.62 kA, in phase В – 2.12 kA, and in phase С – 
3.32 kA. In the steady-state short-circuit mode, the currents 
have the following amplitude values: phase А – 3.65 kA, 
phase В – 1 kA, phase С – 2.29 kA. 
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Fig. 4. Phase voltages 23 km to the end of the line 
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Fig. 5. Phase currents at the end of the line 

 
Fig. 6 shows the change over time of the voltages of 

wire T1 at the beginning and end of the line, and Fig. 7 – 
the currents of wire T2 at the beginning and end of the line, 
too.  

If we analyse the voltage of the ground wire Т1 (Fig. 6), 
we see that when the line is activated, the maximum value 
of the voltage at the beginning of the line reaches -110 kV 
and at the end of the line -200 kV. As it enters the normal 
steady-state mode, the voltages of ground wires reduce to 
zero. After a short circuit, the maximum voltage at the 
beginning of the line reaches -230 kV and at the end of the 
line -300 kV. The amplitude values of the T1 wire voltages 
in the steady-state short-circuit mode are 173 kV and 230 
kV at the beginning and end of the line, respectively.  

 

 
Fig. 6. Voltages of the ground wire T1 at the beginning and end of 
the line 
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If we analyse the currents of the grounded wire Т2 at the 
beginning of the line (Fig. 7), we see that when the line is 
switched on, the highest value of current at the beginning of 
the line is -326 A and at the end of the line -120 A. Both the 
voltages and the currents across the wires tend to zero as 
they enter the steady-state mode. Following a short circuit, 
the current in the wire Т2 at the beginning of the line 
reaches a maximum of 450 A and at its end, 370 A. In the 
steady-state short-circuit mode, these currents have 
amplitudes of 340 A and 290 A, respectively. 

 

 
Fig. 7. Currents of the ground wire T2 at the beginning and end of 
the line 

Fig. 8 shows the voltage distribution of wires T1 and T2 
along the line during a single-phase short circuit at its end, 
where: U*m,r.u. – maximum values of wire voltage modules 
during the short-circuit transient process; U*а,r.u.– amplitude 
values of wire voltages in the steady-state short-circuit 
mode. Here, the voltage values are given in relative units 
(r.u.) relative to the corresponding nominal line voltage. 

 
Fig. 8. Voltage distribution of wires T1 and T2 along the line during 
a single-phase short circuit at its end 
 

Fig. 8 is a significant addition to the picture of the course 
of physical processes in the line with ground wires and the 
possibility of their analysis presented in Fig. 4 – 7. 

In our further research, we plan to use the mathematical 
model of a long line developed in the present paper for an 
analysis of transients in transmission lines during a lightning 
strike. 

 
Conclusion 

The application of boundary conditions of the second 
kind (Neumann's conditions) to solving the differential 
equation of an ultrahigh voltage transmission line with 
ground wires enables searching for the unknown functions 
of voltages of ground wires at the beginning and end of the 
line. This makes it possible to solve the equation of the 
electromagnetic state not only for the phase conductors of 
the line, but also for its ground wires. This approach makes 
it possible to fully take into account overhead ground wires 
in the line model and to study transients at any point of the 
line, and if necessary to reproduce the spatial and temporal-
spatial distributions of voltages and currents of ground wires 
and phase conductors of the line.  

The results of computer simulation confirm theoretical 
studies, in particular, the absence of voltages and currents 
in ground wires in symmetrical line modes and their 
presence during asymmetric switching and emergency 
modes, which gives grounds for asserting the adequacy of 
the developed mathematical model of the line with 
overhead ground wires.  
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