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Application of the discrete linear chirp transform (DLCT) to 
estimate the parameters of multicomponent LFM signals 

 
 

Abstract. This paper is focused on method to estimate the parameters of multicomponent linear frequency modulation (LFM) signals. These non-
stationary signals, which are often referred to as ”chirp”, are encountered in many fields such as communication, vibration analysis, radar systems. 
The presented method, which is based on the discrete linear chirp transform (DLCT), permits the chirp parameters to be precisely estimated. Its high 
performance, which was proven by the simulation results, coupled with its simplicity, makes this method useful for many applications. 
 
Streszczenie. W artykule przedstawiono metodę estymacji parametrów wieloskładnikowych sygnałów z liniową modulacją częstotliwości. Z tego 
typu sygnałami mamy do czynienia w takich dziedzinach jak telekomunikacja, analiza drgań, systemy radarowe. Przedstawiona metoda, bazująca 
na DLCT (ang. Discrete linear chirp transform), pozwala na oszacowanie parametrów wspomnianych sygnałów. Jej wysoka skuteczność, 
potwierdzona wynikami symulacji, w połączeniu z prostotą, czyni metodę użyteczną w wielu zastosowaniach. (Zastosowanie transformacji DLCT 
do estymacji wartości parametrów wieloskładnikowych sygnałów LFM). 
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Introduction 
 Chirp-type signals are common in many areas such as 
physics, seismic exploration, communication, radar-based 
object detection systems etc. Many phenomena can be 
explained by analysing the chirp parameters. For example, 
in synthetic aperture radar (SAR) imaging, the chirp rate in 
the radar return signal provides information about a moving 
target. The traditional Fourier transform is not suitable for 
processing those types of signals, and therefore various 
methods have been proposed. 
 Estimating the chirp parameters has been of interest for 
quite some time. Many of the methods that have proposed 
in the literature are based on the maximum likelihood 
principle. These estimators give the optimal solution but are 
difficult to implement because it requires the 
computationally expensive numerical optimisation of 
nonlinear cost functions, which have many local extrema. 
Moreover, a necessary condition for using this approach is 
a high signal-to-noise ratio of the analysed signals [1]. For 
these reasons, many suboptimal solutions have been 
proposed, e.g. [2, 3]. 
 An alternative approach for analysing the LFM signals 
originated with the development of time-frequency 
distributions (TFD). The commonly known Wigner 
distribution (WD) represents a linear chirp in an ideal way, 
i.e., as a straight line on the time-frequency (T-F) plane. 
Thus, by studying the plane, we are able to easily 
determine the chirp parameters. However, for 
multicomponent signals, their bilinear structure produces 
undesirable oscillatory interferences that are known as 
cross-terms, which is a fundamental limitation to the 
applicability of the quadratic time-frequency methods. 
Because cross-terms render the TFD difficult to interpret 
(especially when there are numerous components), many 
alternative distributions have been proposed in the literature 
[4, 5]. Some of the best-known are the Choi-Williams (CW), 
pseudo-Wigner-Ville (PWV), Born-Jordan (BJ) and reduced 
interference (RI) distribution. However, it is worth noting that 
a consequence of suppressing cross-terms is that many 
useful properties of the distribution are lost (e.g., frequency-
support conservation, unitarity). Thus, there is a trade-off 
between the readability of the T-F representation and the 
number of desirable properties. Moreover, the efficiency of 
a particular distribution depends on the nature of the 

analysed waveforms. Another disadvantage of these 
methods is also their high computational complexity. 
 In contrast to the bilinear TFDs, which provide 
information about the energy distribution on the T-F plane,  
linear time-frequency representations decompose a signal 
to its elementary components (the atoms). Among the 
possible representations, the short-time Fourier transform 
(STFT) is the one that is best known. The advantage of this 
approach is undoubtedly its linearity and easiness of 
implementation. However, it also suffers from a trade-off 
between the time and frequency resolution, which disturbs 
the readability of the time-frequency representation, and 
therefore also reduces the accuracy of reading the chirp 
parameters. 
 Recently, adaptive methods for processing 
multicomponent, non-stationary signals have become of 
great interest. The basic idea of these approaches is to use 
a signal-dependent basis to decompose the original signal 
into a series of oscillatory components (modes). The 
empirical mode decomposition (EMD), which was proposed 
by Huang et al., is a well-known example of this approach 
[6]. EMD is able to decompose a multicomponent signal into 
a set of complete orthogonal intrinsic mode functions (IMFs) 
using basis functions that are derived from the signal itself. 
After the signal has decomposed, the further signal 
processing operations can be performed separately on 
each component. This enables the Hilbert transform to be 
used to determine the instantaneous frequency and 
amplitude in order to characterise the analysed signal. 
Some important limitations that should be kept in mind are 
that EMD suffers from mode mixing, the unclear physical 
meaning of individual IMFs, a sensitivity to noise and a lack 
of a mathematical theory [6, 7]. 
 The estimation problem discussed here was also 
addressed in [8, 9] Using the fractional Fourier transform 
(FrFT), it is possible to rotate the signal in the T-F plane 
[10]. By setting the fractional order  of FrFT to the value 
that corresponds to the spare representation of the 
analysed signal, the chirp rate can easily be obtained using 
the connection between the chirp rate and . Although it 
has been introduced in many papers as a tool for 
processing chirp signals in applications such as radar and 
sonar, automotive, bioacoustics etc., the ability of the FrFT 
to deal with real-world signals is limited [11, 12, 13]. 
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Moreover, this approach becomes inefficient when more 
than one chirp is being considered [14]. 
 This paper also focuses on the problem of estimating 
the parameters of multicomponent linear chirp signals. The 
presented approach is based on the discrete linear chirp 
transform (DLCT). The DLCT, which was introduced in [14] 
in the context of data compression, can represent any 
signal in terms of linear chirps. Using this tool, it is possible 
to transform a non-sparse signal in the T-F plane into a 
sparse signal in the time or frequency domain. Then, by 
finding the peaks in the three-dimensional plot of the 
magnitude of the DLCT, the parameters of the chirp or 
combination of chirps can be determined using this 
transform. To confirm the usefulness of the DLCT for 
solving the estimation problem, numerical simulations with 
both synthetic and real signals were conducted. 
 
Signal model 
 A multicomponent signal can be modelled as the sum of 
the monocomponent signals 
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where K is the number of the signal components. 
 
Let zk(t) denote the analytic associate of the signal's k-th 
component 

(2)    )()()()()( tj
kkkk

ketatsjHtstz   

where H is the Hilbert transform and the ak(t) is the 
instantaneous amplitude (IA). 
The instantaneous frequency (IF) of each component is 
defined by the derivative of the phase of zk(t) 
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For a linear chirp, the phase changes as 
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where ,  are respectively, the chirp rate and the initial 
frequency of a continuous chirp. Thus, using (3) the IF is 
given by 
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The discrete linear chirp transform 
 The DLCT, which was proposed in [14], can represent 
any signal in terms of linear chirps. This representation, 
which generalises the discrete Fourier transform (DFT), can 
be used to determine the parameters of a chirp (or a 
combination of chirps) [11]. 
 A building block of the DLCT is a discrete-time linear 
chirp with finite support, 0n N-1, 
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where  is the chirp rate and k is the initial frequency [14]. 
Let us now assume that  has a finite support, -. 
According to [14] 
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we can construct an orthonormal basis {,k(n)} with respect 
to k in the support of  and n. Thus, the linear chirp 
representation of the signal x(n),  0nN-1, can be written as 
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Using the orthogonality of the basis, the expansion 
coefficients in (8) can be computed as [14] 
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 To obtain a discrete representation, the  must be 
discretised [11]. This can be done by defining parameter 
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which leads to the following approximation 
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The integer value of L can be arbitrary (increasing L 
increases the chirp rate detection resolution). 
Finally, the discrete linear chirp transform can be written as 
[11,14] 
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whereas the inverse DLCT can be written as 

(14) 
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Efficient implementation of the DLCT using FFT 
 One of the advantages of the DLCT is that it can be 
effectively  implemented using the fast Fourier transform 
(FFT) algorithm. The equation (13) can be written in terms 
of the DFT notation as [11,14] 
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Thus, for each fixed l0, X(k,l0) is the DFT of h(n,l0). The 
above reasoning can also be applied to an inverse DLCT 
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recognising the application of an inverse DFT to the 
expansion coefficients, where g(n,l) is computed for each l0 
that satisfies -L/2  l0 L/2-1. 
 
Sampling of the linear chirp signal 
 To establish the connection between the parameters of 
a discrete and continuous chirp, let’s consider a uniform 
sampling t=nTs with a sampling period Ts=1/fs and fs is the 
sampling frequency. For a continuous chirp of the form 
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the discretisation leads to 
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Comparing (19) with (6) yields the sought relationships 
between the parameters of the continuous and discrete 
chirps 
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Simulation results 
 To illustrate how the method works, computer 
experiments were conducted out on a synthetic and a real-
world signal (an in-cylinder pressure waveform that had 
been recorded for abnormal combustion in a spark-ignition 
engine). 
 
Experiment 1: To evaluate the performance of the DLCT in 
estimating the chirp parameters, we ran a simulation for a 
multicomponent, complex signal 
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with the following parameters values: 1=5000 Hz/s, 1=1 
kHz; 2=-5000 Hz/s, 2=2 kHz; 3=2500 Hz/s, 3=4 kHz. The 
signal was sampled at fs=10 kHz and the length was N= 
1000. Figure 1 shows the three-dimensional plot of the 
|DLCT|2. At the locations (1, 1)=(5000 Hz/s, 1 kHz), (2, 
2)=(-5000 Hz/s, 2 kHz), (3, 3)=(2500 Hz/s, 4 kHz) there 
are clearly visible peaks that correspond to the three chirps. 
One can see that obtained results are identical to the 
expected values. 
 

Experiment 2: Knocking combustion in spark-ignition 
(SI) engines is an unwanted form of combustion. It reduces 
engine durability, power density, fuel consumption as well 
as emission performance [15]. Several methods can be 
used to detect this phenomenon [16]. One of them is based 
on the direct measurement and analysis of the in-cylinder 
pressure [17, 18, 19]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Three-dimensional plot of the |DLCT|2 for the synthetic signal 
 

During knocking, high-frequency pressure fluctuations 
whose instantaneous frequency and amplitude decrease 
over time is observed.  In the knock window (crank angle 
range starting from near the top dead centre and ending 
about 70 after the top dead centre), the pressure waveform 
can be viewed as a multicomponent, linear (or near-linear) 
frequency modulation signal, which is embedded in the 
background noise. Since the pressure signal exhibits time-
varying spectra, the natural choice is to use the time-
frequency plane to study it. As an example, Figure 2 shows 
the Choi-Williams distribution of a pressure signal for a 
knocking cycle. As can be seen, during knocking, four 
resonance frequencies, which were located in the range of 
6 kHz - 20 kHz, were observed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. The Choi-Williams distribution of a cylinder pressure trace for 
a knocking combustion cycle 
 

The above pressure signal was used to illustrate how 
the DLCT works with real-world data. On the DLCT plot, 
which is presented in Figure 3, four peaks that correspond 
to resonance frequencies shown in Figure 2 can be 
identified. To increase the readability of the representation, 
the obtained values of the |DLCT|2 were thresholded (values 
lower than 0.1|DLCT|2max were set to zero). The 
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parameters of the chirps that were determined using the 
DLCT were  

 (1,1)=(-84771 Hz/s, 6.77 kHz), 
 (2,2)=(-237359 Hz/s, 12.63 kHz), 
 (3,3)=305176 Hz/s, 16.93 kHz), 
 (4,4)=372993 Hz/s, 20.96 kHz). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Three-dimensional plot of the |DLCT|2 for a knocking 
combustion cycle 
 

The above results can be compared with those read 
from Figure 2. However, because of the limited resolution of 
the CW distribution, only approximation to the exact values 
was obtained. The chirp rate parameter  is related to the 
rate of the frequency change (which can be read from Fig. 
2) by (5). Hence, the approximate values were 
 

 1-192308/2=-96154 Hz/s, 
 2-481481/2=-240740.5 Hz/s, 
 3-607143/2=-303571.5 Hz/s, 
 4-750000/2=-375000 Hz/s. 
 

The initial frequency of each component was:  
 

 1  6.7 kHz, 
 2  12 kHz, 
 3  16 kHz, 
 4  20.2 kHz.  
  

By comparing the results, we see that the DLCT was 
quite accurate. It is important to mention that for real-world 
signals the peaks in the three-dimensional plot of the 
|DLCT|2 are not as clearly visible as is the case with ideal 
LMF signals. This is mainly due to two reasons. Firstly, the 
signal to be analysed must be the sum of strictly linear 
chirps (quadratic-phase). For higher-order chirps, the signal 
representation is not perfectly sparse, that is, the peaks are 
blurred, and there are large side lobes. Secondly, the 
background noise affects the performance of the transform. 

 
Experiment 3: This experiment concerns the problem of 

estimating the chirp parameters in the presence of additive 
noise. The simulation was run for a monocomponent signal 
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The n(t) is a complex, white Gaussian noise with a zero 
mean, where Re(n(t)) and Im(n(t)) are uncorrelated. The 
sampling frequency and signal length was fs=10 kHz, 
N=1000, respecively. The signal parameters were set to 
(,)= (5000 Hz/s, 1 kHz). A computer simulation was 
conducted for M=250 trials at each noise level, which 
corresponds to SNRs that ranged from -20 dB to -5 dB 

(step 0.5 dB). The results of the estimation of the chirp 
parameters are presented in Figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Chirp parameter estimate performance : (a) - initial frequency 
estimation, (b) - chirp rate estimation 
 
On the y-axis, 
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was plotted, where  and  were the assumed values of a 

parameter, and kk  ˆ,ˆ - the estimate from the k-th 

realisation.  
 One can see that at SNR>-14.5 dB, the MSE of the 
estimation of the initial frequency reached a zero value. For 
the chirp rate, the plateau was achieved at SNR>-15 dB. 
Thus, the presented method performed well for SNR>-14.5 
dB, thereby providing a correct chirp parameter estimation  
even for relatively small SNR values. 
 The above results are in agreement with the plots 
shown in Figures 5 and 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Three-dimensional plot of the |DLCT|2 for a monocomponent 
signal with SNR= - 20 dB 
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Fig.6. Three-dimensional plot of the |DLCT|2 for a monocomponent 
signal with SNR= -15 dB  
 

As we can see in Figure 5, when SNR= - 20 dB, the 
peak that corresponds to the chirp cannot be identified. In 
contrast to this, when SNR= -15 dB, the peak is clearly 
visible, providing a correct chirp parameter estimation (Fig. 
6). 
 
Conclusions 

 This paper is focused on estimating the 
parameters of multicomponent, linear-frequency modulation 
signals using the discrete linear chirp transform. The 
presented method offers a simple and efficient solution that 
delivers a good accuracy with a low computational 
complexity. The accuracy of the estimation of the chirp ratio 
and initial frequency were evaluated by simulation 
experiments, which were conducted on a synthetic multi-
component LMF signal and on a real in-cylinder pressure 
waveform that represents an abnormal combustion process 
in SI engine. The obtained results are promising and 
encouraging for the further application of the described 
method in the field of non-stationary signal processing. 

 The presented work also opens several areas for 
further research in this field. Although the DLCT was 
defined for linear chirps, an interesting direction could be in 
generalizing the method for higher-order chirps. Moreover, 
some attempts can be made to develop an automatic 
algorithm to detect peaks, tailored to the specific form of a 
three-dimensional plot of the DLCT. 
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