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Deep Learning Technique for Forecasting Solar Radiation and
Wind Speed for Dynamic Microgrid Analysis

Abstract. The key variables in the development and operation of wind and solar power systems are wind speed and solar radiation. The prediction
of solar and wind energy parameters is important to alleviate the effects of power generation fluctuations. Consequently, it is essential to predict
renewable energy sources like solar radiation and wind speed precisely. An artificial intelligence-based random forest method is recommended in
this paper to estimate wind speed and solar radiation. The number of decision trees in the random forest model is suggested to be optimised using a
novel coot algorithm (CA), and the effectiveness of the CA is evaluated to that of the currently used particle swarm optimisation (PSO) method. The
best forecasting data are used in this work to develop a dynamic Microgrid (MG) in MATLAB/SIMULINK. A novel binary CA is proposed to control
the MG to minimize the cost. The effect of the energy storage system is also investigated during the simulation of the MG.

Streszczenie. Kluczowymi zmiennymi w rozwoju i dziataniu systemow energii wiatrowej i stonecznej sg predkos$c¢ wiatru i promieniowanie
stoneczne. Prognozowanie parametrow energii stonecznej i wiatrowej jest wazne dla ztagodzenia skutkéw wahan produkcji energii. W zwigzku z tym
niezbedne jest precyzyjne przewidywanie zrodet energii odnawialnej, takich jak promieniowanie stoneczne i predko$c wiatru. W tym artykule zaleca
sie metode laséw losowych opartg na sztucznej inteligencji w celu oszacowania predko$ci wiatru i promieniowania stonecznego. Sugeruje sie
optymalizacje liczby drzew decyzyjnych w modelu losowego lasu przy uzyciu nowego algorytmu tyski (CA), a skuteczno$c¢ CA jest oceniana na
podstawie obecnie stosowanej metody optymalizacji roju czastek (PSO). W tej pracy wykorzystano najlepsze dane prognostyczne do opracowania
dynamicznej mikrosieci (MG) w MATLAB/SIMULINK. Proponuje sie nowy binarny CA do sterowania MG w celu zminimalizowania kosztéw. Wptyw
systemu magazynowania energii jest réwniez badany podczas symulacji MG. (Technika glebokiego uczenia sie do prognozowania

promieniowania sfonecznego i predkosci wiatru na potrzeby dynamicznej analizy mikrosieci)

Keywords: Solar power, wind power, random forest method, coot algorithm, microgrid, forecasting.
Stowa kluczowe: energia stoneczna, energia wiatrowa, prognozowanie, gtgbokie uczenie

1. Introduction

Governments and legislators have been pushed to find
and employ alternative energy supplies throughout the past
few decades as a result of environmental concerns and a
lack of energy. It would make it easier to take over the
current electricity generation [1, 2]. The use of RESs, such
as solar and wind energy, is something the researchers are
interested in doing to prevent power outages and
significantly lower carbon dioxide discharges. RESs have
shown tremendous market growth in upcoming years and
are now a globally viable source of power for pricing. RESs
will deliver 2/3 of the world's energy demand by 2050 [3].
How to integrate this sporadic energy source into the smart
power grid is the apparent obstacle in the RES industry's
sustained growth [4]. For substantial energy production,
wind and solar plants need consistent, appropriate wind
speed and sun irradiation [5]. For dependability, utility,
simplicity, and multiple-purpose applicability, an accurate
solar and wind speed forecast approach is required [6, 7].
Due to its dependence on several atmospheric
characteristics, the prediction of RESs is both an important
and difficult topic. The forecast error has a major damaging
impact on the power system's economic and productive
performance. [8].

Over the past few decades, various forecasting
techniques have been used to address the RESs
forecasting issue. Each strategy has particular advantages
and implementation requirements. Direct and indirect
forecasts are two categories into which the forecasting
techniques can be separated. The earlier techniques used
historical power data to predict solar and wind energy
output. Nevertheless, the latter tactics estimate solar
irradiance, wind speed, and additional meteorological
parameters first before converting them to power generation
by taking into account the PV and wind system
characteristics. Through least-squares optimisation, the
authors developed an indirect forecast method for day-
ahead solar power. The numerical weather forecast model
used to determine solar irradiation is available to the

general public [9]. Using the data from the day before, the
authors forecast the hourly sun irradiance for the following
day [10]. The prediction approach employed was a
backpropagation neural network (NN). Jiang created an
artificial NN system using a feed-forward back-propagation
technique to estimate day-to-day sun radiation [11]. To
predict mean worldwide sun irradiation, the authors
developed a statistical regression methodology, and the
efficacy of the proposed method was assessed using
various statistical indicators [12]. The authors proposed a
time-series regression for estimating solar radiation with an
autoregressive integrated moving average (ARIMA) method
[13]. Short-term solar irradiance forecasting was done by
Yang et al. using a lasso linear regression method [14].
Using data on American sun irradiation, a detailed
evaluation was carried out. According to the outcomes,
lasso linear regression outperforms both standard linear
regression and ARIMA models. For estimating solar
irradiation one hour in advance, Ref. [15] suggested a novel
hybrid deep neural approach. To extract data features, a
decoupling procedure is first used to divide the relevant
historical data into several intervals of time series. Second,
to predict solar irradiance, a deep-learning network
incorporating a convolution neural network (NN) and a long
short-term memory (LSTM) is utilized.

Ref [16] suggested a novel hybrid EIman NN model to
improve wind speed predicting outcomes. To keep the
model's variance low while maintaining the anticipated
outcomes' accuracy and stability, a multi-objective
optimisation technique is used. To overcome the
shortcomings of the Elman NN, the proposed model
incorporated an adaptive wind-driven optimisation approach
and a modified simulated annealing approach. A wind
speed bi-forecasting method with data pre-processing,
combination forecasting, and evaluation was put forth by
Nie et al. [17]. To create a time series and get rid of high-
frequency noise components, a decomposition method is
used to accomplish decomposition and reconstruction of the
true wind speed. The weight combination technique was
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adopted in the combined forecasting strategy, which relied
on a multi-verse optimisation process to produce a dual
outcome of forecasting. Similar to this, Lie et al. proposed a
novel hybrid data separation and deep learning NN model-
based wind speed forecasting system [18]. The system is
made up of modules for data preprocessing, forecasting,
and extraction. The wind speed input is divided into various
time series periods using a decomposition approach after
being taken from a sizeable amount of original historical
data. The LSTM forecast module is enhanced using a
genetic algorithm, which is then combined for producing the
final forecast results. The hybrid models' drawback is the
complexity of the problems they can formulate. By using a
support vector machine method for the error in prediction, a
spot forecast of wind generation was conducted by Yang et
al. [19]. The authors in [20] used a neural network with a
covariance adaption evolutionary approach to successfully
forecast wind generation. To predict the wind speed to
install a wind power plant, the authors used the ARIMA
technique with wavelet transform [13]. Ref. [21] provided a
succinct overview of renewable energy, measuring
techniques, and forecasts of solar radiation and wind speed
for effective use of RESs.

To create a microgrid (MG) and deliver enough energy
to satisfy consumer demand, RESs are gathered. The
adoption of distributed generators powered by renewable
resources keeps growing. Diverse MG installations offer
important benefits such as access to comprehensive
distributed generator integration, efficiency enhancement,
cost, risk, and pollution reduction. However, MGs also
present some difficulties. For instance, because standard
tactics are unable to continually adapt to MGs' dynamic
behaviour, new energy management and control strategies
are required Controlling is crucial in an MG scheme to
provide customers with higher-quality, more dependable,
and sustainable energy [23]. To account for geothermal and
biomass generators, solar energy, and battery storage
systems, Ignat et al. constructed an MG in
MATLAB/SIMULINK [24]. Data on the weather is sourced
from a NASA database. An operating cost optimisation
algorithm simulates the MG. To reduce operational costs,
Abdolrasol et al. created an MG in MATLAB/SIMULINK by
integrating a virtual power plant [25]. The best scheduling
controller is advised to use a binary backtracking search
technique. An MG was created in [26] to maximise the
employment of local RES and decrease operational costs,
just as in earlier studies. The MG Simulink model is
simulated using the HOMER software. For the efficient
operation of an MG and the control of energy, numerous
optimisation techniques and heuristics have been used [27-
30].

To generate renewable energy, a variety of methods
have been used to anticipate solar radiation and wind
speed. Prediction models now in use are appropriate for
specific activities, locales, or applications. To predict both
wind speed and sun radiation simultaneously, very few
models are created. Furthermore, not all problems can be
accurately predicted using a single prediction method. To
forecast wind speed and solar radiation, the author
suggests using a random forest (RF) method that is based
on deep learning [31]. The key problem of the suggested
strategy is the right choice of leaves and trees for the RF
model. To choose the right number of decision trees that
can reduce forecasting mistakes, the innovative coot
algorithm (CA) is suggested [32]. When compared to the
particle swarm optimisation (PSO) method, the proposed
CA strategy performs better. Additionally, a novel binary CA
known as BCA is recommended for MG energy
management created in MATLAB/SIMULINK. The MG

model uses the RF-based optimal forecasted data as its

source.

The following is the research's primary contribution:

1. To forecast solar irradiation and wind speed, a random
forest technique based on deep learning is suggested.

2. To preserve accuracy, the decision trees are optimised
using a cutting-edge optimisation method known as the
coot algorithm.

3. Using the data from the day-ahead anticipated solar
irradiance and wind speed, a dynamic microgrid is
created in MATLAB/SIMULINK.

The paper is structured as follows
Section 2 presents wind speed and solar irradiance
forecasting. Section 3 describes the model for forecasting.
Section 4 provides an illustration of the microgrid model.
Section 5 presents the simulation findings, while Section 6
draws conclusions.

2. Prediction of wind speed and solar radiance

The correct choice of input parameters and the
prediction timeline determine the forecasting model's
accuracy. In the microgrid and smart grid, many forecasting
horizons reflect to the various requirements of decision-
making actions [33]. The focus of the ongoing study is on
developing a day-ahead prediction approach.

2.1. Data collection and processing

For day-ahead forecasting, historical information on
wind speed and sun radiation is crucial. The Australian
Bureau of Meteorology provides daily statistics on variables
such as station pressure, mean ambient air temperature,
wind speed, solar radiation, relative humidity, and others
[34]. Before the training phase all inputs and the target are
normalised to the interval [0,1] using equation (1) [35]. The
normalised data can speed up training and assist in
preventing overflow calculations.

) Ko 8 X L gox<
X =X

max min

where X represents the normalized value of data X;
Xmin @nd X4, are the minimum and maximum values of Xj.
After the normalisation procedure is complete, the entire
dataset is divided into 2 sub-sets, namely the training data
and the testing data. About 70% of the dataset for each of
them are utilised for training. The remaining 30% is utilized
for testing. To prevent the data from reoccurring, great
caution is taken.

2.2, Performance evaluation

In this work, the effectiveness of the soft computing
strategy is measured using statistical indices such as root-
mean-square error (RMSE) and mean absolute percentage
error (MAPE). The indices' mathematical expression is as
follows [36]:

M. —P
@ wmape :LZ%MOO%
n=1 j

3) _ LS, -py
RMSE N;(M, P)

where N is the number of samples, M; and P; are measured
and predicted values.

=z

2

3. Forecasting model
3.1. Random forest (RF)

RF during training creates a huge number of decision
trees and classifies or predicts the mean value of each tree
(regression) [31]. Classification and regression issues,
which comprises the majority of modern machine learning
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systems, are where RF excels. The RF addresses the issue
that decision trees frequently overfit a given training set.
The bootstrapping aggregating method is a common way to
train tree learners in the training operation of RF. The RF
predicts or classifies the value of a variable for an input
vector m, by building several regression trees K. Further, it
averages the results as shown in Fig.1. It is possible to
express the RF regression predictor as
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Fig.1. Random forests

Regression using the RF technique operates as follows
[37]:

1. The bootstrap samples are generated at random using
replacements from the main dataset, and each sample
contains around 2/3 of the training dataset. The RFs model
is constructed for each sample using unique patterns from
the dataset. The data that can be used for testing but was
removed from the learning sample is known as "out-of-bag"
(OOB) dataset.

2. To establish the binary rule, a subset of the predictor
parameters is randomly nominated at each regression tree
node. Depending on the residual sum of squares (SoS), the
variable is preferred. For the split, the predictor with the
lowest residual SoS is selected.

3. The maximum amount of development has been done
to each sample tree. The tree isn't pruned at all.

4. As a final step, predictions are made for each of the
sample trees by looking at the test data. The final
anticipated estimate is derived by averaging the predictors
from each regression tree.

The OOB error, or mean square error, is calculated
using the differences between reference and forecast
values. Performance is measured using these OOB error
items.

3.2. Optimization technique for random forest

If there are a lot of training data and decision trees, the
RF approach may predict error-free parameters. The
algorithm becomes more difficult as more data and decision
trees are used. Thus, the parameter approximation is
required to achieve the output that is the greatest degree of
similarity to the observed data as possible with the least
amount of error. Utilizing the smallest amount of errors, the
CA is used to optimise the quantity of decision trees.

3.2.1. Coot algorithm

The Coot algorithm (CA), a revolutionary meta-heuristic
optimisation method derived from the small water birds of
the rail family. The optimisation process is put into practise
by accounting for the 4 coot activities on the water's
surface.

a) Random activity
To perform this movement, equation (5) is first used to
generate a random coot position in the search space.

(5) P =rand(l,m).*(ub—1Ib)+Ib

where /b and ub represents lower and upper limits, m is the
number of dimensions.

The coot changes positions inside the search area. The
algorithm can escape the local optimal thanks to this
mobility. Equation (6) is used to formulate coot's new
position.

(6) Cpos(k) = Cpos(k) + Axrand x (P — Cpos(k)

where A is calculated based on equation (7).

(7) A=1—iterx( )

Maxlter

where Maxlter and iter are the maximum and current

iterations.

b) Chain activity

The normal position of 2 coots is used to compute the
chain activity. Based on equation (8), the coot's new
location is determined.

(8) Cpos(k) =0.5(Cpos(k — 1) + Cpos(k))
where Cpos(k-1) is the previous (second) coot

¢) Position modification considering the group leaders

The other coots modify their positions in accordance
with the average position of the group leaders after taking it
into account. The formula (9) is used to choose the leader

) D =1+ (kMODL)

where L is the number of leaders, D and k represent the
leader and the index number of the current coot
respectively.

Equation (10) is used to determine the coot's next
position after the best leader.
(10)
Cpos(k) = Lpos(d) + 2 X rand X cos(2Rr) X (Lpos(d) —
Cpos(k))

where R is the random numbers [-1,1].
d) Leader activity

Equation (11) is used to assess the leaders' locations to
determine the best position.

B x rand X cos(2Rm) X rand < 0.5
_ ) (pBest — Lpos(k)) + pBest
(11)pos(h) = B x rand X cos( 2Rm) X rand >= 0.5

(pBest — Lpos(k)) — pBest

Where pBest is the best global location and B is
obtained using equation (12)

(12)

B=2—iterx( )

MaxIter

3.3. Random forest implementation

The following variables are used as inputs for estimating
solar radiation: latitude, longitude, mean relative humidity,
air temperature and time. Similar to this, the inputs of
weather temperature, time and pressure are utilised to
forecast the outputs of solar radiance and wind speed.
Figure 2 shows a simplified diagram of the RF method.
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Fig.2. The schematic illustration of RF approach

The RF prediction method consists of three steps. The
initial part of the data collection is receiving the collected
data, and the middle stage is processing it using CA to
establish the quantity of decision trees. The calculated
information is provided in the last stage. By training a large
amount of input/output data, it is possible to anticipate the
output value of an RF structure. The CA technique is used
to optimise the suggested RF model and forecast the output
parameter with the least amount of inaccuracy. By
contrasting the CA's performance with that of the well-
known PSO algorithm, its performance is confirmed. Fig. 3
depicts the CA flowchart for optimising the RF model.
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Fig.3. CA flowchart for RF optimization

4. Microgrid model
4.1. Microgrid model in Simulink

The dynamic MG consists of a diesel generator, PV
farm, wind farm, battery storage and residential load. Diesel
generator act as the primary power source and PV and
wind plants are used to produce renewable energy. The
best-forecasted data of solar radiance and wind speed from
the CA-based RF are utilized as inputs for PV and wind

farms in MATLAB/SIMULINK. The power generation from
the PV farm relies on the area of the farm, predicted solar
irradiance data and the efficiency of the PV panel. The wind
farm generates electrical power based on a linear
relationship with the predicted wind speed. The wind farm
cannot generate electricity when the wind speed outstrips
the speed limitations (beyond 7 to 15 m/s). Fig.4 shows the
Simulink model of MG utilized in this research work.
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4.2. Binary Coot Algorithm

The novel CA only works for the continuous-based
problem. However, a binary algorithm is expected to control
(on/off) the MG for minimizing the operating cost. In this
study, a binary CA (BCA) is developed whose search
surface is limited to [0,1]. The activity of the coot in the
search surface is updated by changing the position between
‘0’ and ‘1’. The primary variance between CA and BCA is
the coot location updating. The initial location of the coot is
generated depending on the basic CA and then a
probability function is employed to force the coot for
choosing either 0 or 1. The probability function is
represented in equation (13). The coot's new location is
upgraded by adopting the probability function while
maintaining the state, as presented in equation (14).

(13) T(l,) =|tanh(l,) |

L I, if rand <|T(l,)|
"), otherwise
where rand is a random number in the range of [0,1].

(14)

The following are the steps of the BCA technique.

Step 1: The algorithm is initialized by resetting population size and
iteration.

Step 2: Randomly creates coot locations.

Step 3: Chose leaders randomly from the coot.

Step 4: Evaluate the fitness function.

Step 5: Find the best leader as global optimal.

Step 6: Update the coot location using (14) and evaluate the fithess
function.

Step 7: Update the coot location according to the leaders’ location,
if necessary.

Step 8: Update leaders’ location using (14) and evaluate the fitness
function.

Step 9: Update global optimum.

Step 10: Repeat Steps 6 to 8 until the iteration criteria are fulfilled.
Step 11: Print the global optimum solution.

4.2.1. Benchmark function
In this study, two mostly used binary algorithm testing
benchmark functions are utilized to assess the competence
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of BCA. Table 1 shows the properties of binary test
functions [38].

Table 1. Binary test functions

ID Test Functio Search Dimensi  Best
function nname  space on (n) known
n
F1 fl(X):ZXi Max [017° 160 160
- one
L . 160 20
F2  f,00=3 []x Royal [-5.12,56.12]

i=l j=8(i-1)+

road

4.2.2. Performance Evaluation

Using binary benchmark functions, the suggested BCA's
performance with the bit update technique is evaluated.
Additionally, by contrasting the BCA's performance with that
of the quantum-inspired binary PSO (QPSO) method, the
performance of the BCA is proven [39]. For both strategies,
the size of population is set as 30 and the max iteration as
100, respectively.

4.3. Implementation of BCA for MG

The BCA technique is utilized as a controller for
maximizing the utilization of solar and wind energy and
minimizing the operating cost. In the simulation, BCA
generates a binary matrix in which ‘1’ represents the
particular generator is ON while ‘O’ represents the particular
generator is OFF. In each run, the BCA minimizes the
fitness function as shown in equation (15) to reduce the
operating cost [25]. Fig.5 illustrates the workflow of BCA for
simulating the MG.

(15) Cy =(1.5xPx pf xE,)

where Cy is the minimum cost, P is the power, pf is the
power factor and Ep is the energy price $/MWh per hour.

‘ Initialize parameters ‘

—P{ Generate population }4—
v

‘ Check generation limits ‘

Calculate values
(Maximize RESs utilization,
Use storage if applicable)

MG can’t be
supplied

Fig.5. Flow diagram of BCA for the simulation of an MG for 24
hours.

5. Simulation results
5.1. Wind Speed and solar irradiation forecasting

The RF system is optimised utilizing the suggested CA
technique. For the purpose of validating the findings, the
effectiveness of the recommended approach is evaluated

166

with PSO. Two error indices are used to assess the
effectiveness of both strategies. Table 1 displays the
predictions made by CA and PSO, whereas Fig. 6 displays
how well the optimisation strategies performed in reducing
errors. According to the assessment, both approaches can
be used to accurately estimate wind speed and solar
irradiation. Finding the ideal optimisation method for the RF
model is crucial, though. The ideal outcomes of the RF
technique with CA are superior to PSO, as seen in Table 2
and Fig. 6.

Table 2. Prediction result for LSA compared with PSO

Prediction Optimization Solar irradiation Wind speed
technique technique RMSE | MAPE(%) | RMSE | MAPE(%)
RF CA 0.0366 2.98 0.0602 4.78

PSO 0.0486 3.81 0.0715 5.93

Note: The bold italic value denotes the minimal error

The CA-based RF projected solar irradiance and wind
speed are shown in Fig.7 together with actual data. The
anticipated values are unquestionably near to the actual
ones, as can be seen from the figure. The RF model makes
it easy to predict wind speed and solar radiation,
nevertheless, there may be some alterations among the
predicted and actual data. The predicted errors of the CA-
optimized RF for the dataset on wind speed and solar
irradiance are displayed in Fig.8.
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5.2. Performance Evaluation of BCA

In this section, the performance of BCA is shown using
two binary benchmark functions. Moreover, the
performance of BCA is compared with QPSO. Both
algorithms are run 30 times for each function to find the
consistency and efficiency of the algorithm. Table 3 shows
the numerical outcomes and the best performance is
indicated in italicized boldface. From the table, it can be
shown that both algorithms can find the best solution for F1
and F2. However, the BCA needs a smaller number of
iterations to find the best solution. Fig.9 shows the boxplot
of 30 independent runs for both F1 and F2. Fig.10 shows
the convergence rate curves. From table 3 and figures 9
and 10, it can be concluded that both algorithms can find
the best solution, however, BCA performs better than
QPSO because this algorithm is more consistent and
requires less number of iterations to obtain the best solution

Table 3. Optimization results of benchmark function

: ) S, win,
ID Algorithm Best | Worst | Average Median Deviation iteration
BCA 160 | 160 160 160 0 31
FI [ apso | 160 | 157 | 15956 | 160 | 0.7041 205
BCA 20 | 19 19.98 20 0.1414 38
21 apso | 20 | 17 19.06 19 0.9563 209
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5.3. Microgrid simulation

In this study, a simulated MG is introduced consisting of
a diesel unit, a PV farm, a wind farm, and a battery storage
system. Two cases of MG are presented to analyse the
power system problems. In the first case, the MG contains a
diesel unit, a PV farm, and a wind farm in the simulation. In
this case, the energy of the PV and wind systems is fully
utilized to reduce the operating cost. The energy
generation and demand are considered for a whole day (24
hrs). Fig.11 shows the MG profiles in terms of voltage,
current, apparent power, active power, and reactive power
for all generations and load demand.
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Fig.11. Microgrid profiles for case 1 a) Diesel, b) PV, c) Wind, and
d) Load

In the second case, the battery storage system is added
to case 1 MG. The battery energy storage system is utilized
for specific periods of high load demand to reduce the peak
demand. The generation of solar power, wind power, and
load demand is the same as in case 1. Similar to case 1,
the energy of the PV and wind systems is fully utilized.
Fig.11 shows the MG profiles for case 2. From Figures 11
(a) and 12(a), it can be seen that the consumption of diesel
power is reduced by introducing a storage system for the
peak demand (Fig.12e).
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Fig.12. Microgrid profiles for case 2 a) Diesel, b) PV, c) Wind, d)
Load, and e) Battery storage
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5.4. Cost-effective evaluation

The calculation of operating costs is important for MG.
The operating cost of PV and wind farms are cheap, but
they are inconsistent in generating power because of the
weather conditions. Therefore, a diesel unit is incorporated
into the system, but this unit is expensive. Battery storage is
enforced to minimize the peak demand. The BCA approach
is introduced to optimally schedule the generators to
minimize the cost. Energy consumption and electricity cost
are calculated per day as follows [25].

(16)
(17)

E(MWh /day) = P(MW) xt(h/day)
C....($/day) = E(MWh/day) x Cost($/ MWh)

where C.s is the energy price/day, P is the active power, E
is the energy/day.

The energy cost is calculated for each day. The average
tariff rates for renewable energy are varying from 0.04 to
0.10 $/kWh [40]. Fig.13 shows that the cost of a system
without battery storage (case 1)is $28328.965, whereas
after including battery storage (case 2), the cost reduces to
$24407.095.

5 < 10%
28328.965

24407.095

Cost (§)

With storage Without Storage

Fig.11>. Cost minimization for 24 hours in case of using a storage
system

6. Conclusion

The day-to-day average of wind speed and
solar radiation is forecasted using an RF algorithm built on
deep learning. Additionally, the CA methodology is
suggested as a way to enhance the RF forecasting method
and reduce forecasting errors. A performance assessment
of the proposed CA approach and the familiar PSO
algorithm is made. The proposed CA method outperforms
the traditional approach in terms of performance. An MG
was also designed in MATLAB/SIMULINK using the optimal
forecasted data. Two cases are analysed for calculating the
operating cost and concluded that the MG with a battery
storage system could considerably reduce the operating
cost. The prediction model's accuracy will be improved in
subsequent work by incorporating large data, according to
the scientists. Future work might also include the
introduction of the battery storage's bidirectional control.
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