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Deep Learning Technique for Forecasting Solar Radiation and 
Wind Speed for Dynamic Microgrid Analysis 

 
 

Abstract. The key variables in the development and operation of wind and solar power systems are wind speed and solar radiation. The prediction 
of solar and wind energy parameters is important to alleviate the effects of power generation fluctuations. Consequently, it is essential to predict 
renewable energy sources like solar radiation and wind speed precisely. An artificial intelligence-based random forest method is recommended in 
this paper to estimate wind speed and solar radiation. The number of decision trees in the random forest model is suggested to be optimised using a 
novel coot algorithm (CA), and the effectiveness of the CA is evaluated to that of the currently used particle swarm optimisation (PSO) method. The 
best forecasting data are used in this work to develop a dynamic Microgrid (MG) in MATLAB/SIMULINK.  A novel binary CA is proposed to control 
the MG to minimize the cost. The effect of the energy storage system is also investigated during the simulation of the MG.  
 
Streszczenie. Kluczowymi zmiennymi w rozwoju i działaniu systemów energii wiatrowej i słonecznej są prędkość wiatru i promieniowanie 
słoneczne. Prognozowanie parametrów energii słonecznej i wiatrowej jest ważne dla złagodzenia skutków wahań produkcji energii. W związku z tym 
niezbędne jest precyzyjne przewidywanie źródeł energii odnawialnej, takich jak promieniowanie słoneczne i prędkość wiatru. W tym artykule zaleca 
się metodę lasów losowych opartą na sztucznej inteligencji w celu oszacowania prędkości wiatru i promieniowania słonecznego. Sugeruje się 
optymalizację liczby drzew decyzyjnych w modelu losowego lasu przy użyciu nowego algorytmu łyski (CA), a skuteczność CA jest oceniana na 
podstawie obecnie stosowanej metody optymalizacji roju cząstek (PSO). W tej pracy wykorzystano najlepsze dane prognostyczne do opracowania 
dynamicznej mikrosieci (MG) w MATLAB/SIMULINK. Proponuje się nowy binarny CA do sterowania MG w celu zminimalizowania kosztów. Wpływ 
systemu magazynowania energii jest również badany podczas symulacji MG. (Technika głębokiego uczenia się do prognozowania 
promieniowania słonecznego i prędkości wiatru na potrzeby dynamicznej analizy mikrosieci) 
 
Keywords: Solar power, wind power, random forest method, coot algorithm, microgrid, forecasting. 
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1. Introduction 

Governments and legislators have been pushed to find 
and employ alternative energy supplies throughout the past 
few decades as a result of environmental concerns and a 
lack of energy. It would make it easier to take over the 
current electricity generation [1, 2]. The use of RESs, such 
as solar and wind energy, is something the researchers are 
interested in doing to prevent power outages and 
significantly lower carbon dioxide discharges. RESs have 
shown tremendous market growth in upcoming years and 
are now a globally viable source of power for pricing. RESs 
will deliver 2/3 of the world's energy demand by 2050 [3]. 
How to integrate this sporadic energy source into the smart 
power grid is the apparent obstacle in the RES industry's 
sustained growth [4]. For substantial energy production, 
wind and solar plants need consistent, appropriate wind 
speed and sun irradiation [5]. For dependability, utility, 
simplicity, and multiple-purpose applicability, an accurate 
solar and wind speed forecast approach is required [6, 7]. 
Due to its dependence on several atmospheric 
characteristics, the prediction of RESs is both an important 
and difficult topic. The forecast error has a major damaging 
impact on the power system's economic and productive 
performance. [8].  

Over the past few decades, various forecasting 
techniques have been used to address the RESs 
forecasting issue. Each strategy has particular advantages 
and implementation requirements. Direct and indirect 
forecasts are two categories into which the forecasting 
techniques can be separated. The earlier techniques used 
historical power data to predict solar and wind energy 
output. Nevertheless, the latter tactics estimate solar 
irradiance, wind speed, and additional meteorological 
parameters first before converting them to power generation 
by taking into account the PV and wind system 
characteristics. Through least-squares optimisation, the 
authors developed an indirect forecast method for day-
ahead solar power. The numerical weather forecast model 
used to determine solar irradiation is available to the 

general public [9]. Using the data from the day before, the 
authors forecast the hourly sun irradiance for the following 
day [10]. The prediction approach employed was a 
backpropagation neural network (NN). Jiang created an 
artificial NN system using a feed-forward back-propagation 
technique to estimate day-to-day sun radiation [11]. To 
predict mean worldwide sun irradiation, the authors 
developed a statistical regression methodology, and the 
efficacy of the proposed method was assessed using 
various statistical indicators [12]. The authors proposed a 
time-series regression for estimating solar radiation with an 
autoregressive integrated moving average (ARIMA) method 
[13]. Short-term solar irradiance forecasting was done by 
Yang et al. using a lasso linear regression method [14]. 
Using data on American sun irradiation, a detailed 
evaluation was carried out. According to the outcomes, 
lasso linear regression outperforms both standard linear 
regression and ARIMA models. For estimating solar 
irradiation one hour in advance, Ref. [15] suggested a novel 
hybrid deep neural approach. To extract data features, a 
decoupling procedure is first used to divide the relevant 
historical data into several intervals of time series. Second, 
to predict solar irradiance, a deep-learning network 
incorporating a convolution neural network (NN) and a long 
short-term memory (LSTM) is utilized. 

Ref [16] suggested a novel hybrid Elman NN model to 
improve wind speed predicting outcomes. To keep the 
model's variance low while maintaining the anticipated 
outcomes' accuracy and stability, a multi-objective 
optimisation technique is used. To overcome the 
shortcomings of the Elman NN, the proposed model 
incorporated an adaptive wind-driven optimisation approach 
and a modified simulated annealing approach. A wind 
speed bi-forecasting method with data pre-processing, 
combination forecasting, and evaluation was put forth by 
Nie et al. [17]. To create a time series and get rid of high-
frequency noise components, a decomposition method is 
used to accomplish decomposition and reconstruction of the 
true wind speed. The weight combination technique was 
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adopted in the combined forecasting strategy, which relied 
on a multi-verse optimisation process to produce a dual 
outcome of forecasting. Similar to this, Lie et al. proposed a 
novel hybrid data separation and deep learning NN model-
based wind speed forecasting system [18]. The system is 
made up of modules for data preprocessing, forecasting, 
and extraction. The wind speed input is divided into various 
time series periods using a decomposition approach after 
being taken from a sizeable amount of original historical 
data. The LSTM forecast module is enhanced using a 
genetic algorithm, which is then combined for producing the 
final forecast results. The hybrid models' drawback is the 
complexity of the problems they can formulate. By using a 
support vector machine method for the error in prediction, a 
spot forecast of wind generation was conducted by Yang et 
al. [19]. The authors in  [20] used a neural network with a 
covariance adaption evolutionary approach to successfully 
forecast wind generation. To predict the wind speed to 
install a wind power plant, the authors used the ARIMA 
technique with wavelet transform [13]. Ref. [21] provided a 
succinct overview of renewable energy, measuring 
techniques, and forecasts of solar radiation and wind speed 
for effective use of RESs.   

To create a microgrid (MG) and deliver enough energy 
to satisfy consumer demand, RESs are gathered. The 
adoption of distributed generators powered by renewable 
resources keeps growing. Diverse MG installations offer 
important benefits such as access to comprehensive 
distributed generator integration, efficiency enhancement, 
cost, risk, and pollution reduction. However, MGs also 
present some difficulties. For instance, because standard 
tactics are unable to continually adapt to MGs' dynamic 
behaviour, new energy management and control strategies 
are required Controlling is crucial in an MG scheme to 
provide customers with higher-quality, more dependable, 
and sustainable energy [23]. To account for geothermal and 
biomass generators, solar energy, and battery storage 
systems, Ignat et al. constructed an MG in 
MATLAB/SIMULINK [24]. Data on the weather is sourced 
from a NASA database. An operating cost optimisation 
algorithm simulates the MG. To reduce operational costs, 
Abdolrasol et al. created an MG in MATLAB/SIMULINK by 
integrating a virtual power plant [25]. The best scheduling 
controller is advised to use a binary backtracking search 
technique. An MG was created in [26] to maximise the 
employment of local RES and decrease operational costs, 
just as in earlier studies. The MG Simulink model is 
simulated using the HOMER software. For the efficient 
operation of an MG and the control of energy, numerous 
optimisation techniques and heuristics have been used [27-
30]. 

To generate renewable energy, a variety of methods 
have been used to anticipate solar radiation and wind 
speed. Prediction models now in use are appropriate for 
specific activities, locales, or applications. To predict both 
wind speed and sun radiation simultaneously, very few 
models are created. Furthermore, not all problems can be 
accurately predicted using a single prediction method. To 
forecast wind speed and solar radiation, the author 
suggests using a random forest (RF) method that is based 
on deep learning [31]. The key problem of the suggested 
strategy is the right choice of leaves and trees for the RF 
model. To choose the right number of decision trees that 
can reduce forecasting mistakes, the innovative coot 
algorithm (CA) is suggested [32]. When compared to the 
particle swarm optimisation (PSO) method, the proposed 
CA strategy performs better. Additionally, a novel binary CA 
known as BCA is recommended for MG energy 
management created in MATLAB/SIMULINK. The MG 

model uses the RF-based optimal forecasted data as its 
source.  

The following is the research's primary contribution: 
1. To forecast solar irradiation and wind speed, a random 

forest technique based on deep learning is suggested. 
2. To preserve accuracy, the decision trees are optimised 

using a cutting-edge optimisation method known as the 
coot algorithm. 

3. Using the data from the day-ahead anticipated solar 
irradiance and wind speed, a dynamic microgrid is 
created in MATLAB/SIMULINK.  

The paper is structured as follows 
Section 2 presents wind speed and solar irradiance 
forecasting. Section 3 describes the model for forecasting. 
Section 4 provides an illustration of the microgrid model. 
Section 5 presents the simulation findings, while Section 6 
draws conclusions. 

 
2. Prediction of wind speed and solar radiance  

The correct choice of input parameters and the 
prediction timeline determine the forecasting model's 
accuracy. In the microgrid and smart grid, many forecasting 
horizons reflect to the various requirements of decision-
making actions [33]. The focus of the ongoing study is on 
developing a day-ahead prediction approach. 
 
2.1. Data collection and processing 

For day-ahead forecasting, historical information on 
wind speed and sun radiation is crucial. The Australian 
Bureau of Meteorology provides daily statistics on variables 
such as station pressure, mean ambient air temperature, 
wind speed, solar radiation, relative humidity, and others 
[34]. Before the training phase all inputs and the target are 
normalised to the interval [0,1] using equation (1) [35]. The 
normalised data can speed up training and assist in 
preventing overflow calculations. 
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where 𝑋ሜ  represents the normalized value of data Xk; 
𝑋௠௜௡ and 𝑋௠௔௫ are the minimum and maximum values of Xk. 
After the normalisation procedure is complete, the entire 
dataset is divided into 2 sub-sets, namely the training data 
and the testing data. About 70% of the dataset for each of 
them are utilised for training. The remaining 30% is utilized 
for testing. To prevent the data from reoccurring, great 
caution is taken.  
 
2.2. Performance evaluation 

In this work, the effectiveness of the soft computing 
strategy is measured using statistical indices such as root-
mean-square error (RMSE) and mean absolute percentage 
error (MAPE). The indices' mathematical expression is as 
follows [36]: 
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where N is the number of samples, Mj and Pj are measured 
and predicted values. 
 
3. Forecasting model 
3.1. Random forest (RF) 

RF during training creates a huge number of decision 
trees and classifies or predicts the mean value of each tree 
(regression) [31]. Classification and regression issues, 
which comprises the majority of modern machine learning 
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systems, are where RF excels. The RF addresses the issue 
that decision trees frequently overfit a given training set. 
The bootstrapping aggregating method is a common way to 
train tree learners in the training operation of RF. The RF 
predicts or classifies the value of a variable for an input 
vector m, by building several regression trees K. Further, it 
averages the results as shown in Fig.1. It is possible to 
express the RF regression predictor as 
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Fig.1. Random forests 
 

Regression using the RF technique operates as follows 
[37]: 
1. The bootstrap samples are generated at random using 
replacements from the main dataset, and each sample 
contains around 2/3 of the training dataset. The RFs model 
is constructed for each sample using unique patterns from 
the dataset. The data that can be used for testing but was 
removed from the learning sample is known as "out-of-bag" 
(OOB) dataset. 
2. To establish the binary rule, a subset of the predictor 
parameters is randomly nominated at each regression tree 
node. Depending on the residual sum of squares (SoS), the 
variable is preferred. For the split, the predictor with the 
lowest residual SoS is selected.  
3. The maximum amount of development has been done 
to each sample tree. The tree isn't pruned at all. 
4. As a final step, predictions are made for each of the 
sample trees by looking at the test data. The final 
anticipated estimate is derived by averaging the predictors 
from each regression tree. 
 The OOB error, or mean square error, is calculated 
using the differences between reference and forecast 
values. Performance is measured using these OOB error 
items. 

 

3.2. Optimization technique for random forest  
If there are a lot of training data and decision trees, the 

RF approach may predict error-free parameters. The 
algorithm becomes more difficult as more data and decision 
trees are used. Thus, the parameter approximation is 
required to achieve the output that is the greatest degree of 
similarity to the observed data as possible with the least 
amount of error. Utilizing the smallest amount of errors, the 
CA is used to optimise the quantity of decision trees.  

 

3.2.1. Coot algorithm  
The Coot algorithm (CA), a revolutionary meta-heuristic 

optimisation method derived from the small water birds of 
the rail family. The optimisation process is put into practise 
by accounting for the 4 coot activities on the water's 
surface. 

 
 
 
 

a) Random activity 
To perform this movement, equation (5) is first used to 

generate a random coot position in the search space.  
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where lb and ub represents lower and upper limits, m is the 
number of dimensions. 

The coot changes positions inside the search area. The 
algorithm can escape the local optimal thanks to this 
mobility. Equation (6) is used to formulate coot's new 
position. 
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where A is calculated based on equation (7). 
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where MaxIter and iter are the maximum and current 
iterations.  

 

b) Chain activity  
The normal position of 2 coots is used to compute the 

chain activity. Based on equation (8), the coot's new 
location is determined.  
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where Cpos(k-1) is the previous (second) coot 
 

c) Position modification considering the group leaders 
The other coots modify their positions in accordance 

with the average position of the group leaders after taking it 
into account. The formula (9) is used to choose the leader  
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where L is the number of leaders, D and k represent the 
leader and the index number of the current coot 
respectively. 

Equation (10) is used to determine the coot's next 
position after the best leader. 
(10) 
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where R is the random numbers [-1,1]. 
 

d) Leader activity 
 

Equation (11) is used to assess the leaders' locations to 
determine the best position.  
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Where pBest is the best global location and B is 
obtained using equation (12) 
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3.3. Random forest implementation 
The following variables are used as inputs for estimating 

solar radiation: latitude, longitude, mean relative humidity, 
air temperature and time. Similar to this, the inputs of 
weather temperature, time and pressure are utilised to 
forecast the outputs of solar radiance and wind speed. 
Figure 2 shows a simplified diagram of the RF method. 
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Fig.2. The schematic illustration of RF approach 
 

The RF prediction method consists of three steps. The 
initial part of the data collection is receiving the collected 
data, and the middle stage is processing it using CA to 
establish the quantity of decision trees. The calculated 
information is provided in the last stage. By training a large 
amount of input/output data, it is possible to anticipate the 
output value of an RF structure. The CA technique is used 
to optimise the suggested RF model and forecast the output 
parameter with the least amount of inaccuracy. By 
contrasting the CA's performance with that of the well-
known PSO algorithm, its performance is confirmed. Fig. 3 
depicts the CA flowchart for optimising the RF model. 
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Fig.3. CA flowchart for RF optimization 
 
4. Microgrid model  
4.1. Microgrid model in Simulink 

The dynamic MG consists of a diesel generator, PV 
farm, wind farm, battery storage and residential load. Diesel 
generator act as the primary power source and PV and 
wind plants are used to produce renewable energy. The 
best-forecasted data of solar radiance and wind speed from 
the CA-based RF are utilized as inputs for PV and wind 

farms in MATLAB/SIMULINK. The power generation from 
the PV farm relies on the area of the farm, predicted solar 
irradiance data and the efficiency of the PV panel. The wind 
farm generates electrical power based on a linear 
relationship with the predicted wind speed. The wind farm 
cannot generate electricity when the wind speed outstrips 
the speed limitations (beyond 7 to 15 m/s). Fig.4 shows the 
Simulink model of MG utilized in this research work. 

 

 
Fig.4. Simulink model of dynamic MG 
 
4.2. Binary Coot Algorithm 

The novel CA only works for the continuous-based 
problem. However, a binary algorithm is expected to control 
(on/off) the MG for minimizing the operating cost. In this 
study, a binary CA (BCA) is developed whose search 
surface is limited to [0,1]. The activity of the coot in the 
search surface is updated by changing the position between 
‘0’ and ‘1’. The primary variance between CA and BCA is 
the coot location updating. The initial location of the coot is 
generated depending on the basic CA and then a 
probability function is employed to force the coot for 
choosing either 0 or 1. The probability function is 
represented in equation (13). The coot's new location is 
upgraded by adopting the probability function while 
maintaining the state, as presented in equation (14). 
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where rand is a random number in the range of [0,1]. 
 
The following are the steps of the BCA technique. 
 
Step 1: The algorithm is initialized by resetting population size and 
iteration. 
Step 2: Randomly creates coot locations. 
Step 3: Chose leaders randomly from the coot. 
Step 4: Evaluate the fitness function. 
Step 5: Find the best leader as global optimal. 
Step 6: Update the coot location using (14) and evaluate the fitness 
function. 
Step 7: Update the coot location according to the leaders’ location, 
if necessary. 
Step 8: Update leaders’ location using (14) and evaluate the fitness 
function. 
Step 9: Update global optimum. 
Step 10: Repeat Steps 6 to 8 until the iteration criteria are fulfilled. 
Step 11: Print the global optimum solution. 
 
4.2.1. Benchmark function  

In this study, two mostly used binary algorithm testing 
benchmark functions are utilized to assess the competence 
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of BCA. Table 1 shows the properties of binary test 
functions [38].  
 
Table 1. Binary test functions 
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4.2.2. Performance Evaluation 
Using binary benchmark functions, the suggested BCA's 

performance with the bit update technique is evaluated. 
Additionally, by contrasting the BCA's performance with that 
of the quantum-inspired binary PSO (QPSO) method, the 
performance of the BCA is proven [39]. For both strategies, 
the size of population is set as 30 and the max iteration as 
100, respectively.   

 
4.3. Implementation of BCA for MG 

The BCA technique is utilized as a controller for 
maximizing the utilization of solar and wind energy and 
minimizing the operating cost. In the simulation, BCA 
generates a binary matrix in which ‘1’ represents the 
particular generator is ON while ‘0’ represents the particular 
generator is OFF. In each run, the BCA minimizes the 
fitness function as shown in equation (15) to reduce the 
operating cost [25]. Fig.5 illustrates the workflow of BCA for 
simulating the MG. 
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where CM is the minimum cost, P is the power, pf is the 
power factor and EP is the energy price $/MWh per hour.  
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Fig.5. Flow diagram of BCA for the simulation of an MG for 24 
hours. 
 

5. Simulation results 
5.1. Wind Speed and solar irradiation forecasting 

The RF system is optimised utilizing the suggested CA 
technique. For the purpose of validating the findings, the 
effectiveness of the recommended approach is evaluated 

with PSO. Two error indices are used to assess the 
effectiveness of both strategies. Table 1 displays the 
predictions made by CA and PSO, whereas Fig. 6 displays 
how well the optimisation strategies performed in reducing 
errors. According to the assessment, both approaches can 
be used to accurately estimate wind speed and solar 
irradiation. Finding the ideal optimisation method for the RF 
model is crucial, though. The ideal outcomes of the RF 
technique with CA are superior to PSO, as seen in Table 2 
and Fig. 6.  

 
Table 2. Prediction result for LSA compared with PSO 
 
Prediction 
technique 

Optimization 
technique 

Solar irradiation Wind speed 
RMSE MAPE(%) RMSE MAPE(%) 

RF 
CA 0.0366 2.98 0.0602 4.78 

PSO 0.0486 3.81 0.0715 5.93 

Note: The bold italic value denotes the minimal error 
 

The CA-based RF projected solar irradiance and wind 
speed are shown in Fig.7 together with actual data. The 
anticipated values are unquestionably near to the actual 
ones, as can be seen from the figure. The RF model makes 
it easy to predict wind speed and solar radiation, 
nevertheless, there may be some alterations among the 
predicted and actual data. The predicted errors of the CA-
optimized RF for the dataset on wind speed and solar 
irradiance are displayed in Fig.8. 

a) 

 
b) 

 
Fig.6. Error minimization for the forecast of (a) wind speed and (b) 
solar irradiation using CA and PSO 
 

a) 
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b) 

 
 

Fig.7. Data on (a) wind speed and (b) solar radiation, both actual 
and expected, are presented 

a) 

 
b) 

 
Fig.8. Error curves of (a) wind speed and (b) solar irradiation from a 
CA optimized RF  
 
5.2. Performance Evaluation of BCA 

In this section, the performance of BCA is shown using 
two binary benchmark functions. Moreover, the 
performance of BCA is compared with QPSO. Both 
algorithms are run 30 times for each function to find the 
consistency and efficiency of the algorithm.  Table 3 shows 
the numerical outcomes and the best performance is 
indicated in italicized boldface. From the table, it can be 
shown that both algorithms can find the best solution for F1 
and F2. However, the BCA needs a smaller number of 
iterations to find the best solution. Fig.9 shows the boxplot 
of 30 independent runs for both F1 and F2. Fig.10 shows 
the convergence rate curves. From table 3 and figures 9 
and 10, it can be concluded that both algorithms can find 
the best solution, however, BCA performs better than 
QPSO because this algorithm is more consistent and 
requires less number of iterations to obtain the best solution 
 
Table 3. Optimization results of benchmark function 

ID Algorithm Best Worst Average Median 
Std. 

Deviation
Min. 

iteration

 
F1 

BCA 160 160 160 160 0 31 

QPSO 160 157 159.56 160 0.7041 205 

 
F2 

BCA 20 19 19.98 20 0.1414 38 

QPSO 20 17 19.06 19 0.9563 209 

 
 

a) 

 
b) 

 
Fig.9. Optimization results of benchmark function. 9(a) F1 and 9(b) 
F2 
a) 

 
b) 

 
Fig.10. Convergence characteristic curves for BCA and QPSO. 
10(a) F1 and 10(b) F2 

 

5.3. Microgrid simulation  
In this study, a simulated MG is introduced consisting of 

a diesel unit, a PV farm, a wind farm, and a battery storage 
system. Two cases of MG are presented to analyse the 
power system problems. In the first case, the MG contains a 
diesel unit, a PV farm, and a wind farm in the simulation. In 
this case, the energy of the PV and wind systems is fully 
utilized to reduce the operating cost.  The energy 
generation and demand are considered for a whole day (24 
hrs). Fig.11 shows the MG profiles in terms of voltage, 
current, apparent power, active power, and reactive power 
for all generations and load demand.  
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a)                                                  b)  

 
c)                                                d) 

 
Fig.11. Microgrid profiles for case 1 a) Diesel, b) PV, c) Wind, and 
d) Load 
 
 

In the second case, the battery storage system is added 
to case 1 MG. The battery energy storage system is utilized 
for specific periods of high load demand to reduce the peak 
demand. The generation of solar power, wind power, and 
load demand is the same as in case 1. Similar to case 1, 
the energy of the PV and wind systems is fully utilized.  
Fig.11 shows the MG profiles for case 2. From Figures 11 
(a) and 12(a), it can be seen that the consumption of diesel 
power is reduced by introducing a storage system for the 
peak demand (Fig.12e). 
 

 a)                                           b) 

      
c)                                                  d) 

 
e) 

 
Fig.12. Microgrid profiles for case 2 a) Diesel, b) PV, c) Wind, d) 
Load, and e) Battery storage 
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5.4. Cost-effective evaluation   
The calculation of operating costs is important for MG. 

The operating cost of PV and wind farms are cheap, but 
they are inconsistent in generating power because of the 
weather conditions. Therefore, a diesel unit is incorporated 
into the system, but this unit is expensive. Battery storage is 
enforced to minimize the peak demand. The BCA approach 
is introduced to optimally schedule the generators to 
minimize the cost. Energy consumption and electricity cost 
are calculated per day as follows [25]. 

 
(16)       )/()()/( dayhtMWPdayMWhE           

  (17)    )/($)/()/($cos MWhCostdayMWhEdayC t      

 
where Ccost is the energy price/day, P is the active power, E 
is the energy/day.  

 
The energy cost is calculated for each day. The average 

tariff rates for renewable energy are varying from 0.04 to 
0.10 $/kWh [40]. Fig.13 shows that the cost of a system 
without battery storage (case 1) is $28328.965, whereas 
after including battery storage (case 2), the cost reduces to 
$24407.095. 

 
Fig.11. Cost minimization for 24 hours in case of using a storage 
system 

 
6. Conclusion  

The day-to-day average of wind speed and 
solar radiation is forecasted using an RF algorithm built on 
deep learning. Additionally, the CA methodology is 
suggested as a way to enhance the RF forecasting method 
and reduce forecasting errors. A performance assessment 
of the proposed CA approach and the familiar PSO 
algorithm is made. The proposed CA method outperforms 
the traditional approach in terms of performance. An MG 
was also designed in MATLAB/SIMULINK using the optimal 
forecasted data. Two cases are analysed for calculating the 
operating cost and concluded that the MG with a battery 
storage system could considerably reduce the operating 
cost. The prediction model's accuracy will be improved in 
subsequent work by incorporating large data, according to 
the scientists. Future work might also include the 
introduction of the battery storage's bidirectional control. 
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