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Abstract. Despite the many advantages of Multiple Input Multiple Output (MIMO) Wireless Communication systems, their receiver design is quite a 
challenging task as there is always a trade-off between the receiver performance and the computational complexity. If performance is optimum, the 
computational complexity is exceptionally high and vice-versa. In this paper by using Bayesian Optimization, the performance of an AI-based MIMO 
receiver algorithm, called DetNet is improved. The results show an improvement in detection performance without any increase in time complexity. 
 

Streszczenie. Pomimo wielu zalet systemów komunikacji bezprzewodowej MIMO (Multiple Input Multiple Output), ich konstrukcja odbiornika jest 
dość trudnym zadaniem, ponieważ zawsze istnieje kompromis między wydajnością odbiornika a złożonością obliczeniową. Jeśli wydajność jest 
optymalna, złożoność obliczeniowa jest wyjątkowo wysoka i odwrotnie. W tym artykule, dzięki zastosowaniu optymalizacji bayesowskiej, wydajność 
algorytmu odbiornika MIMO opartego na sztucznej inteligencji, zwanego DetNet, została poprawiona. Wyniki pokazują poprawę wydajności 
wykrywania bez żadnego wzrostu złożoności czasowej. (Wydajna sieć głębokiego uczenia do wykrywania MIMO przy użyciu optymalizacji 
bayesowskiej) 
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Introduction 

It is projected that the communication sector will 
continue to expand quite quickly because it is essential to 
the innovation and profusion of different economic sectors, 
including transportation, consumer electronics, healthcare, 
agriculture, finance, and services [1]. The future wireless 
networks necessitate a variety of uses such as Highly 
Digitized Smart Cities, Vehicle-to-everything (V2X), XR 
applications, Brain Computer interfaces, Flying vehicles, 
robotization, etc [2], [3]. Thus, wireless communication 
systems need to upscale for meeting the needs of future 
technologies.  

Multiple Input Multiple Output, abbreviated as MIMO 
systems, include multiple antennas on both the transmitter 
and receiver sides and form the essential component of 
various wireless systems as these offer various advantages 
such as an increase in reliability due to Diversity 
Combining, a decrease in Bit Error Rate (BER), manifold 
increment in data rate due to Spatial Multiplexing, better 
Quality-of-service(QoS), improvement in Energy Efficiency, 
etc [4]. However, the main barrier that affects the 
performance of MIMO systems is the not-so-good 
performance of detection techniques due to the trade-off 
between high Computational Complexity and poor Error 
rate performance. Reproducing a message chosen at one 
point either precisely or roughly at another location is the 
fundamental issue of communicating [5]. 

In MIMO systems, at the signal receiver (detection) side, 
multiple signals arriving simultaneously at multiple receive 
antennas from multiple transmit antennas, need to be 
detected jointly. For example, consider a 4x2 MIMO system 
that has 4 antennas at the transmitting end and 2 antennas 
at the receiving end. Here, four antennas are sending four 
distinct signals simultaneously which are received by both 
the antennas at the receiver. These signals must be 
detected jointly.  

There are different types of MIMO receivers in literature 
[6]. Optimal MIMO receivers such as Maximum Likelihood 
(ML) and Maximum-a-priori (MAP) receivers, though 
optimal, are impractical as their complexity increases 
exponentially. Though Linear MIMO detectors are preferred, 
their performance is limited. Spherical Decoder (SD) is used 
but these provide high efficiency only for high SNRs. Lattice 
reduction (LR) techniques with SD may be used to improve 

performance. Also, for spatially multiplexed MIMO 
schemes, using transmission schemes such as V-BLAST 
(Vertical/horizontal layered space-time transmission) and D-
BLAST (Diagonal Bell labs layered space-time 
transmission), advanced MIMO receivers may be used such 
as Successive Interference Cancellation (SIC), Ordered SIC 
(OSIC), LR, etc.  Several metaheuristic-based MIMO 
detectors have also been developed as mentioned in [7]. 

Using Deep Learning (DL) techniques in MIMO 
detectors, there is no need to compromise between the 
complexity of the system and BER. Optimal MIMO 
detectors (e.g., Maximum Likelihood Detector (MLD)), have 
good BER performance but have impractical computational 
complexity. However, MIMO detectors such as MLD can be 
easily represented by DL methods, i.e., Deep Neural 
Networks, and with very low complexity, as these work as 
general function approximators [8].  

The rest of the paper is organized as follows. The next 
section presents the need for model-driven Deep Learning 
models and one such model employed for MIMO detection, 
known as DetNet is described. After that, Bayesian 
Optimization algorithm and its application for tuning of 
hyperparameters is described. The next section highlights 
the new work done for enhancing the performance of 
DetNet. The proposed algorithm is called BODetNet. After 
that, the simulation results show the supremacy of 
BODetNet over DetNet in terms of BER. Also, the model is 
an Interpretable AI model and that is shown using Partial 
Dependence Plots. This is followed by Conclusions and 
References. 
 

AI-based MIMO receiver: DetNet 
Though data-driven Deep Learning (DL) methods have 

been widely applied to physical layer communication, the   
training of such networks needs extensive computing 
resources, a large amount of time, and a huge dataset, both 
of which are not easily found in communication networks. 
These treat the communication system like some sort of 
"black box," for which, the training requires large quantities 
of data. 

Model-driven Deep Learning (DL) methods come to the 
rescue by reducing the requirement of many resources for 
computation and extensive time for training as these 
networks are constructed by exploiting already known 
domain knowledge [9]. 
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DetNet (Detection Network) [10] is a model-driven DL 
based MIMO detection algorithm. It was created using a 
Projected Gradient Descent Method (or pgdm) for neural 
network ML detection [11]. It outperforms the traditionally 
used expectation propagation-based MIMO detectors and 
iterative MIMO detectors such as AMP which fail to provide 
optimal performance under difficult conditions, where the 
channel distribution is unknown. With respect to Symbol 
Error Rate (SER), DetNet also outperforms MIMO detectors 
based on sphere decoding. It achieves greater accuracy 
than Semi Definite Relaxation (SDR) MIMO detectors and is 
greater than 30 times faster than it. DetNet takes input in 
the form of received signals and perfect Channel State 
Information (CSI). It has proven to be robust in both cases 
of difficult fixed channel conditions and of varying channel 
case, having a known channel distribution. Real-time, Near-
optimal performance is possible by using DetNet as it is 
quite fast. It is able to work on different models by training 
only once. The fully connected architecture, abbreviated as 
‘FullyCon’, as shown in Fig. 1 is the basic Deep Neural 
Network architecture. which is made up of ‘L’ layers in 
which each layer’s output is fed to the next layer’s input. It 
only has a few parameters that need to be optimised. and 
doesn’t exploit channel H. 

 
Fig. 1. Representation of Single layer of FullyCon architecture [12]. 

As compared to Fullycon, DetNet, as shown in Fig. 2, 
utilizes channel information and has more parameters to 
optimize. DetNet’s weighted average of one layer is fed to 
the next. 

 

Fig. 2. Representation of Single layer of DetNet. [12]. 
 
Bayesian Optimization (BO) for Hyperparameter Tuning (HT) 

Bayesian optimization (BO) is a sequential design 
approach that does not make any functional form 
assumptions and is used for the global optimization of 
black-box functions. Usually, it is used to improve difficult-
to-evaluate functions that are not computationally 
inexpensive. In various ML algorithms, the tuning of 
learning parameters and modeling of hyperparameters must 
be done quite carefully and frequently. However, it is not an 
easy task and it needs expert experience and sometimes 
brute force searching. Thus, automatic approaches are 
required [13]. The most popular ways of hyperparameter 

tuning for ML are Manual Tuning, Grid Search and Random 
Search, out of which, Bayesian optimization (BO) is the 
best. 
 

Proposed system 
In this work, BO is employed for Hyperparameter Tuning 

of the DetNet MIMO detector. Expected Improvement (EI) is 
employed as an acquisition function, while Gaussian 
Process (GP) is used as a surrogate function. The 
optimized MIMO detection network is termed as BODetNet, 
as depicted in Fig. 3. 

 
Fig. 3: Simplified model of the proposed 
 

To the best of our knowledge, by doing an extensive 
literature survey, we have found out that BO has not been 
applied on DetNet for its Hyper Parameter Tuning. 
 

Simulation parameters & Results  
The hyperparameters obtained after applying Bayesian 

Optimization and the results obtained after using these 
hyperparameters on the MIMO receiver model are listed in 
this section. 
 

Optimized Hyperparameters 
As discussed in earlier sections, hyperparameters denote 

the configurations that have to be set before the  training of 
a model in order to customize it to the dataset. The best set 
of hyperparameters have been found out using Bayesian 
Optimization and are listed in Table 1. 
 

Table 1. The parameters of the sensor 
Hyperparameter 

name 
Hyperparameter 

value 
Description of the 
Hyperparameter 

res_alpha 0.7348030690540688 The proportion of the 
previuos layer output to be 
added to the current layers 

output. 
decay_factor 0.689345364283937 It is the factor which 

decay_step_size steps the 
learning rate decay. 

decay_step_size 1161 
 

Each decay_step_size 
steps the learning rate 

decay by decay_factor. 
train_batch_size 4643 Batch size during training 

phase. 
startingLearningR

ate 
0.7348030690540688 The initial step size of the 

gradient descent 
algorithm. 

 

 

Fig. 3. Convergence plot 

The convergence plot in Fig. 3 depicts that after 8 itera-
tions, the results have converged and there is no further 
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improvement in the value of BER. The results show 24% 
improvement in BER as compared to DetNet [12] espe-
cially, at low SNR values,as shown in Fig. 4 and Table 2. 

 
Fig. 4. BER versus SNR graph  
 

Table 2. Comparison of DetNet and BoDetNet results 
SNR BER for DetNet BER for BODetNet 

8 0.0254615 0.0228825 
9 0.0151945 0.012667 
10 0.0081115 0.00642 
11 0.0040525 0.0030725 
12 0.001827 0.001316 

 
Interpretable Machine Learning (IML) using Partial dependence 
plot with categorical value 

Interpretability in ML and DL models is of utmost 
importance in future wireless networks. It is necessary to 
have insight regarding how these models work for the 
datasets and if there is any problem, it can be identified and 
resolved. Thus, using Explainable and Interpretable ML and 
DL, the models are no longer ‘Black Boxes’.  IML has been 
suggested to be applied to gain insights from the data 
obtained during HPO with Bayesian optimization (BO) [14].  

 
Fig. 5.  PDP with categorical value 

One of the methods is by using Partial Dependence 
Plots (PDPs). PDPs depict how the predictions of the model 
are affected by each variable or predictor [15]). The PDPs 
describe how predicted outcome of the ML or DL model is 
marginally effected from one or two features. It can also 
give information about the relationship between target and 
feature i.e, whether it is monotonic, linear or more complex 
[16]. PDPs plotting two input features depict the interplay of 
both. These plots also describe how various inputs are 
affecting the target response by taking marginal effect of 

remaining input features. (Partial Dependence and 
Individual Conditional Expectation plots). From Fig. 5, the 
effect of anyone hyperparameter on others can be 
interpreted. It can also be interpreted that the 
startingLearningRate hyperparameter has themost effecton 
the target results.  
 
Conclusions 

The proposed BODetNet MIMO detection algorithm 
shows successful improvement of the DetNet structure that 
has been showcased in terms of decrease in BER via 
simulation. In this paper, we have proposed an 
improvement of DetNet which is an AI-based MIMO 
detection algorithm.  
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