
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 287

Dariusz SAWICKI1, Łukasz IZDEBSKI2, Agnieszka WOLSKA3, Mariusz WISEŁKA3

Warsaw University of Technology (1), JRS Software, Warsaw (2), Central Institute for Labour Protection – National Research Institute (3)
ORCID: 1. 0000-0003-3990-0121; 2. 0000-0002-1998-4041; 3. 0000-0003-3912-605X; 4. 0000-0002-7145-6457

doi:10.15199/48.2024.12.61

Multiscreen Graphic Driver for Semi-Cave Virtual Reality in
Vulkan Environment

Streszczenie. Cave Automatic Virtual Environment (CAVE) to przykład instalacji multimedialnej umożliwiającej postrzeganie rzeczywistości wirtualnej
(VR) w jej najlepszej postaci. Celem artykułu jest przedstawienie specjalistycznej instalacji tego typu (SEMI-CAVE), w której opracowano autorskie
oprogramowanie do wyświetlania informacji z wykorzystaniem środowiska Vulkan. Zwrócono uwagę na korzyści, problemy i dobre praktyki
programistyczne. Eksperymenty i badania przeprowadzone w SEMI-CAVE potwierdziły zalety przyjętego rozwiązania. (Sterownik graficzny dla
rzeczywistości wirtualnej typu CAVE w środowisku Vulkan).

Abstract. Cave Automatic Virtual Environment (CAVE) is an example of a multimedia installation that allows perceiving virtual reality (VR) in its best
form. The aim of the article is to present a specialized installation of this type (SEMI-CAVE), in which authors’ own display software based on Vulkan
environment was developed. The benefits, problems and good programming practices were also highlighted. Experiments and conducted research in
SEMI-CAVE laboratory have confirmed the advantages of the proposed solution.

Słowa kluczowe: środowisko wirtualne, zanurzenie w wirtualną rzeczywistość, wirtualna rzeczywistość typu CAVE
Keywords virtual environment, immersive VR, CAVE VR

Introduction

The virtual reality (VR) has become one of the most
important achievements of computer science in recent years.
In many areas of science, the use of VR techniques not only
speeds up the study, but also facilitates them or sometimes
simply allows conducting the research.

The considered realization – SEMI-CAVE – is an
example of multimedia laboratory where VR is applied to
specialized research. It is one of the laboratories which were
built in the scope of project Tech-Safe-Bio [1], which was
realized in recent years in Central Institute for Labour
Protection - National Research Institute (CIOP-PIB). The
state-of-the-art laboratories built in the Tech-Safe-Bio project
are adjusted to conduct interdisciplinary research focused
on, widely understood, protection of health and safety of
workers. The SEMI-CAVE laboratory allows, among other
things, to conduct research on the impact of the physical
environment on employees. In this regard, virtual reality
techniques and computer simulations offers practically un-
limited research possibilities.

OpenGL (Open Graphics Library) is a programming tool
for creating 2D and 3D graphics. It was created in the 90s of
the last century and was popularized thanks to the work of
Silicon Graphics Inc. Currently, OpenGL is open source
software developed by the Khronos Group and is considered
as the de facto industry standard. Vulkan is a similar tool for
creating 3D graphics, developed since 2016 by the same
specialists from the Khronos Group. Vulkan is a low-
overhead tool, it is considered as a "thin graphic API" which
gives the same possibilities as OpenGL but using less
resource. Initially, Vulkan was treated as the next generation
of OpenGL for computer game programming. However, both
tools are currently being developed and used in a wide range
of different applications. The most important advantage of
Vulkan is that it allows the programmer to work at a lower
level of programming and gives much better – full control
over the graphics creation process.

The use of VR for a wide range of research requires
precise control of the process of building a virtual world and
effective display of virtual information. The need for full
control of the graphics creation process in a specific SEMI-
CAVE environment resulted in the use of Vulkan API. It is an
advanced and complicated solution, with a non-obvious way
of solving many programming tasks. It is probably the first
time this tool has been used in Cave installations – the

authors are not aware of any publications describing such
examples. Experiments and conducted research in SEMI-
CAVE laboratory have confirmed the advantages of Vulkan
API and the suitability of this software for specialized
applications.

The main aim of the article is to present how the Vulkan
API was used to create display software in the SEMI-CAVE
environment. To make the most of the hardware capabilities,
we have developed own – proprietary solution of the display
software using shader language programming. In the article,
we also tried to include practical comments and advice
resulting from our experiences.

Virtual Reality in CAVE System – The Short Survey

CAVE (Cave Automated Virtual Environment) is an
implementation of virtual reality (VR) in which the participant
(recipient of VR experiences) is in a small room. On its walls
(often also on the floor and ceiling) an image of reality is
projected into which the participant is immersed. The number
of publications on CAVE and VR is very large. On the basis
of review articles [2-4], several basic categories of technical
solutions for CAVE systems can be distinguished. The first
prototype of a CAVE type solution was built in 1992 [5]. It had
5 translucent walls (including the ceiling and the floor) on
which the image was projected from the outside (rear
projection). This installation was made on the basis of a cube
with a side of about 2.10 m – not giving the participant too
much free space. However, the entire installation took up
much more space due to the external projectors and the
supporting structure [5]. The need for a very large space to
implement CAVE virtual reality with rear projection is the
main disadvantage of such a solution. In later projects, six
walls were used most often, but different constructions are
also known. Single wall installation in the image resolutions
of the range from 1024x768 [6] to 6000x4096 pixels [7], two
walls [8], four walls [7] and five walls [9]. The most advanced
and the most expanded solution today includes projecting
onto 15 side walls plus the ceiling and the floor [10]. There
were also solutions using: the sphere on the surface of which
the projection is made [11] or solutions connecting the
sphere and the cube [12].

Apart from the rear projection, the front projection (inside
the CAVE object) onto the walls of the laboratory is also used
[13]. This makes it possible to obtain a much larger CAVE
area with a comparable size of the entire installation.

288 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024

CAVE2 is a VR implementation in which the walls of the
VR space are covered with LCD monitors [14]. The
disadvantage of such a solution is the physical gaps between
the screens at the point of their connection. This does not
allow for full immersion into VR [15,16].

The presentation method of graphical information is the
main problem of all CAVE solutions. Because of known
difficulties, the special attention is paid on image stitching
[17]. The visual properties related to the position of the
observer and the quality of image stitching, are factors that
influence the quality of immersion into VR very strongly [18].

Additional problems may arise in CAVE installations:
users may experience severe and long-lasting visual
disturbances. Sometimes they may feel isolated or confused
and even panicked [8].

Planned research – expectations related to virtual reality

The aim of building the SEMI-CAVE installation was to
use virtual reality to create different visual environments in
workplaces. It was assumed that it is possible to study the
influence of various parameters of the created environment
on the broadly understood psychophysiology of vision (e.g.
eye fatigue, psychomotor performance, visual performance,
well-being, emotions, and human alertness). The study of
human reactions to various visual stimuli and lighting
parameters is important both for the safety of people at work
as well as for their health and well-being, which indirectly
translates into better work efficiency. Additional
supplementation of the virtual space with real elements
(desks, chairs, work tools, etc.) makes it possible to blur the
boundary between the real and the virtual world, and thus
definitely improves the immersion into VR. On the other
hand, the necessity to use ancillary equipment (such as an
eye tracker or EEG recording system) used in alertness level
or psychomotor testing requires additional available space.
Another type of research that has been considered in a virtual
environment is research on discomfort glare from LED
sources. This phenomenon is most often the result of the
appearance of a light source in the field of view, the
luminance of which is much higher than the surroundings
luminance [19]. The use of VR with real elements is very
convenient for glare research, as it gives the opportunity to
simulate different lighting and working conditions, as well as
various methods of assessing the phenomenon [20].

Such widely understood research tasks require a
relatively large area of the room. This would be difficult to do
in a typical very small CAVE installation. When designing
SEMI-CAVE, a solution was selected that supports a
relatively large space. This allowed us to meet the
expectations related to the research plans.

SEMI-CAVE – realization

The SEMI-CAVE virtual reality installation was
implemented in a room with dimensions of 8.6m x 4.3m x 6m.
The projection is realized by projecting the image directly
onto 4 walls of the room (front projection). The images are
projected by 6 projectors: two for longer walls and one for
shorter walls (Figure 1). Optical systems of the projectors,
made in the short throw technology works with the use of
perspective correction – Lens Shift and Keystone. It allows
shadowless projection, when approaching a distance of
about 1m to the wall, people with a height of 1.7m. The
obtained distance of the "shadowless" approach (1m) is a
compromise resulting from the use of projectors at a certain
price. On the other hand, one may wonder if this is a sufficient
distance. In the SEMI-CAVE installation, such conditions of
shadow-free operation allow users to have an area of over
2m wide and over 6m long. It is a relatively large space that
meets the design expectations. Thus, it is a space that would

not be possible to achieve in a traditional, small CAVE
installation space. The images are generated in our
computer by the set of three high performance PNY
professional graphics cards with NVIDIA graphic processor
unit (GPU). Each card supports two images (two projectors).
The specific conditions of SEMI-CAVE installation dictated
the need of self-developed software (including appropriate
drivers). Only such software gives us full control over the
developed whole solution.

Fig. 1. The method of displaying images in the SEMI-CAVE
installation (based on [21]). Connections of displayed images: on
longer walls, images from adjacent projectors (images 1 and 2,
images 4 and 5) overlap (50 pixels); in the corners of the room
(pictures 2 and 3; 3 and 4; 5 and 6; 6 and 1) images are projected
"to joint" (to the edge / image associated with the corner of the room).

The stitching problem in SEMI-CAVE virtual reality

The quality of the displayed image in CAVE installations
is a key issue that determines the possibility of getting the
best possible immersion into VR created inside the
installation [22]. Particular attention is paid to the problems
of stitching pictures [17].

The first important task is to correct the geometry so that
the projected, adjacent images "fit together" and create one
whole – one virtual world. Additionally, the problem is made
worse by the passage of time – "aging" of the structure and
micro-vibrations change (spoil) the display geometry. The
geometry correction is, in fact, a properly selected
transformation of a quadrilateral into a quadrilateral [23].

The second important task is to correct the color
displayed by the projectors. The individual differences
between the projectors used and their individual aging create
small color changes. Unfortunately, such changes are
registered by the sense of sight and have a negative impact
on the quality of immersion into VR [24]. The measure of
color mismatch is the difference in color coordinates [25].

Both corrections must be made while the information is
displayed. This way effective correction of geometry and
color for image stitching is a very important goal of the
software we have developed for displaying information in the
SEMI-CAVE environment.

OpenGL and VULKAN environment

The basic implementation problem in the SEMI-CAVE
was the choice of the programming environment for software
development. Although CAVE environments have been
known for many years, the creators rarely present the
software they have developed and used. Most often in
publications we find only information about the spectacular
possibilities of VR. Installation of SEMI-CAVE is a specific
solution and the authors decided to develop their own display
control, based on self-developed software. It was decided to
use the Vulkan environment [26,27]. Vulkan API is a low-
level, cross-platform application programming interface
supporting the generation of 3D graphics. It is a tool
developed by the Khronos Group. Vulkan API is mostly

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 289

adopted (at the time of writing this article) in game industry,
and well known in the game engines like Unreal Engine 4,
Unity, CryEngine etc. Other industries slowly are adopting
this API in their applications. However, many developers use
documented experience from game programming in their
applications, showing the great usefulness of Vulkan.

Vulkan API, in contrast to the previous generation of
graphical APIs such as OpenGL, is intended and designed
for more advanced and experienced graphics programmers.
It provides, through its interfaces, more low-level access to
the graphics card resources and the rendering pipeline. This
can lead to a large number of potential pitfalls waiting for the
programmer. Therefore, experience and strict adherence to
the standard are very important. On the other hand, the
experience of programmers from the Khronos Group meant
that Vulkan API gives the possibility of convenient and
effective programming at the application level, similar to
OpenGL. It gives precise control over the communication of
the 3D application with the window operating system
(Windows). It allows, among other things, to gain direct
control over the association of specific application windows
with the display of information from selected graphics cards.
This is particularly important in the case of multiscreen
display implemented by several independent graphics cards
– which is particularly important in the SEMI-CAVE
installation.

Effective use of graphics card processors
Graphics cards used in the SEMI-CAVE installation have

a very large application potential. However, their effective
use is not an easy task. After analyzing the possibilities of
programming these cards, it was decided that the entire
image display system (display support and subsystems for
geometry and color correction) would be fully implemented in
shader language solution. It is worth emphasizing that this
technique is very effectively supported by Vulkan API.

Vertex / Index Buffer

Framebuffer

Fig. 2. Tasks of rendering pipeline described by modern shaders and
implemented in hardware by GPU cores. On the base of
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics

Modern graphics cards (based on modern graphics

processors) have a multi-core structure. The number of cores
in the most powerful graphics cards exceeds 1000 (reaching

even 10 000 for the latest products). Cores are highly
optimized for generating 3D graphics and for general-
purpose computing. All cores are clocked equally and are
independent computing units. Performance studies show
that the number of cores cannot be treated as a decisive
parameter for the effectiveness of a graphics card (in a
simple way), because efficiency is also strongly influenced
by communication handling and memory performance.
However, the greater the number of cores, the more parallel
subprocesses can be run to handle graphics generation. The
work of the cores is managed by the hardware task
scheduler, whose task is to correctly divide the work into
many processes and assign each of the processes to the
appropriate GPU core.

Shader [28] is a relatively short program that is executed
directly by the graphics card processor (and only by this
processor). The shader is written in such a way as to use the
hardware capabilities of the card, which is provided by the
support of the parallel architecture of the processor cores, in
the most effective way. A typical set of tasks in the rendering
pipeline (supported by OpenGL and Vulkan) is shown in
Figure 2. All operations have a hardware representation in
the graphics card processor. On the other hand, because
Vulkan is a continuation of OpenGL (by the same company),
most of the procedures in them can be implemented
interchangeably. This has been used effectively in the
software for SEMI-CAVE.

It was assumed that the software would work in two
modes.
 Working (standard) mode, when the images are

displayed, and the normal use of a SEMI-CAVE
installation is taking place. Both corrections must be
made while the information is displayed.

 Editing mode, during which geometry and color can be
corrected. In this mode, we can define the operating
conditions of both corrections and see the consequences
of their operation.

In the working mode, the application should be done in the
most effective way, using the computer resources as little as
possible.

Results – the shader driver developed for SEMI-CAVE
installation

Vulkan API can offer comparable functionality to NVIDIA
graphic cards with some additional logic to help with
configuration multi GPU and multi-desktop environment. To
achieve this, the XML configuration file was developed in
which users enter data that describe the current system
configuration (desktop and hardware mapping which can be
found in NVIDIA Control Panel). This configuration file also
contains information about the location of virtual cameras
that are used for rendering SEMI-CAVE environment.

The graphical application for displaying information and
also for stitching images in working mode has been
implemented using GPU shaders. The stitching configuration
is made using the XML configuration file and the final
software has been prepared in the Visual Studio using the
Vulkan environment [27,29].

To produce a smooth continuous transition of projected
desktop images various techniques were used. All those
techniques were using hardware features and for fixing no
ideal position and orientation of projectors in-room images

The first step is the configuration of Vulkan’s projection of
the virtual camera. As rendered images proportion and
resolution are prepared too much projector’s resolution, so
application is filling the front face of cull volume and model
view projection matrix of the virtual camera is an identity
matrix.

Input Assembler

Vertex Shader

Tessellation

Geometry Shader

Rasterization

Fragment Shader

Color Blending

290 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024

Desktop projection on walls was selected to receive the
greatest common area. Subspace which was outside of the
common area are organized by clipping planes. This
mechanism realized by Vulkan API allows an application to
provide information about additional clipping planes, against
which rendered geometry will be clipped. Each user-
specified clip plane (up to a minimum of 8 planes) can be
turned on and off separately. For each of them, four plane
equation coefficients can be provided using Vulkan API
(Listing 1).

Listing 1.

 gl_ClipDistance[0] = dot(pushConsts.cull_plane[0],gl_Position);
 gl_ClipDistance[1] = dot(pushConsts.cull_plane[1],gl_Position);
 gl_ClipDistance[2] = dot(pushConsts.cull_plane[2],gl_Position);
 gl_ClipDistance[3] = dot(pushConsts.cull_plane[3],gl_Position);

Color correction is done on two adjacent areas, and the

size of those left and right areas are defined by the user in
the XML configuration file. The correction was implemented
in a fragment shader. The rendered image was divided into
the 3 vertical areas (Listing 2).

Listing 2.

 vec3 mainColor = texture(texSampler, fragTexCoord).xyz;
 vec3 one = vec3(1.0,1.0,1.0);
 float eqLineL = fragBlendLines.z;
 float eqLineR = fragBlendLines.w;
 float eqStepL = step(gl_FragCoord.x, eqLineL);
 float eqStepR = step(gl_FragCoord.x, eqLineR);
 float eqCenter = (1.0 - eqStepL)*(1.0 - eqStepR);
 float smoothL = 1.0 - smoothstep(0.0, eqLineL, gl_FragCoord.x);
 vec3 eqBlendL = one + smoothL*(fragColor.rgb - one);
 float smoothR = 1.0 - smoothstep(0.0, eqLineR, gl_FragCoord.x);
 vec3 eqBlendR = one + smoothR*(fragColor.rgb - one);
 vec3 eqSumColor = vec3(eqCenter,eqCenter,eqCenter) +
 (eqStepL*eqBlendL) + (eqStepR*eqBlendR);
 vec3 finalColor = mainColor * eqSumColor;

Blending two adjacent and overlapped areas of projected

desktop images was done also fragment shader. The
rendered image was divided also into the 3 vertical areas
(separate from color correction). Users can define the size of
those areas in the XML configuration file. Blending can be
turned on the left and right areas separately, and choose if
linear, smooth interpolation is used to blend the current color
of the rendered pixel with black color (Listing 3).

Listing 3.

 float blendLineL = fragBlendLines.x;
 float stepL = step(gl_FragCoord.x, blendLineL);
 float blendLineR = fragBlendLines.y;
 float stepR = step(gl_FragCoord.x, blendLineR);
 float smoothstepL = smoothstep(0.0, blendLineL, gl_FragCoord.x);
 float smoothStepR = smoothstep(0.0, blendLineR, gl_FragCoord.x);
 float mSumBlend = (1.0-stepL)*(1.0-stepR) +
 (stepL*smoothstepL)+(stepR*smoothStepR);
 outColor = mFinalColor * mSumBlend;

On the basis of the procedure prepared for displaying

information, an application carrying out appropriate tasks of
correction has been prepared. The software has been
implemented in Visual Studio using the OpenGL libraries
[30], and works on the level of shader drivers [28]. Both
modes (working mode and editing mode) use a common
code associated with managing the display of windows in a
Windows environment. All implemented operations within the
appropriate shader have hardware representations in the
graphics card processor. On the other hand, the division into

appropriate procedures in OpenGL and Vulkan was
designed to achieve the maximum performance of a given
processor. Moreover, since Vulkan and OpenGL were
designed by the same consortium, most of the procedures in
them can be used interchangeably. This has been effectively
applied in the SEMI-CAVE software.

In editing mode application is using OpenGL. This was
made for faster iterations over developing stitching editor
used in research. The same effects can be achieved with a
Vulkan based editor, but time constraints have forced a well-
known approach to be used.

According to the assumptions, the correction software
meets the following requirements.
 Software support is implemented by means of a simple,

intuitive interface enabling easy shape correction.
 The ability to visually check the correctness of the

proposed geometry.
 In the correction of color and luminance, the software will

support the measurements of proper parameters.
 The software will include a convenient and effective

communication interface with the user.
We analyzed the image stitching problem and assumed that
geometry correction would be performed first. Color
correction will only be performed when all images are
geometrically correct. Details of interface features of the
prepared software for geometrical and luminance/color
correction have been described in [21] and [31] respectively.

Vulkan is a next-generation open standard API that
provides high-performance, cross-platform access to modern
GPUs. Unlike, for example, OpenGL, it was designed with
this in mind as the foundation for how modern graphics cards
are built and how they are communicating with operating
systems. Those guidelines provide a multi-threading-centric
design to leverage modern multi-core CPUs and provide
access to GPUs via multiple parallel command queues.

Communication between application and shaders are
made by a feature which is available in Vulkan API called
push constants. Push constants allow sending a small
amount of data to any shader, in a very simple and effective
way. Those data are stored in the Vulkan’s Command Buffer
itself.

An alternative approach will be using Vulkan’s Uniform
Buffers. To be able to access Uniform Buffer in the shader is
accomplished through what is called in Vulkan API a
descriptor. Usage of descriptors consists of three parts:
 Specify a descriptor layout during pipeline creation.
 Allocate a descriptor set from a descriptor pool.
 Bind the descriptor set during rendering.
The next step is tasks that involve Uniform Buffer itself, which
can be described as:
 Creation of Uniform Buffer in specific memory type

(depend on the size of data and usage).
 Copy data to the buffer memory.
 Depend on memory type explicit usage of memory barrier

primitives.
Fortunately, data needed for control culling color correction
and blending viewports used in Sami-Cave application is
small enough that fit in Push Constant data limits (minimum
supported limit is 128 bytes – defined by the standard [29]).
This approach is easier to implement and does not result in
a decrease in real-time performance.

The shader’s code and communication are designed to
be as thin as possible, which means that the overhead
introduced by them on the CPU and GPU was as low as
possible. Consequently, they could be used as an almost
invisible intermediate layer between the hardware and future
applications built on top of this approach.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 291

Tests of the developed software

Initial tests for correct operation were carried out at the
stage of application programming in the Visual Studio
environment. Then, using the prepared images, the
correctness was checked in the target SEMI-CAVE
environment. Testing graphical applications has the
advantage that potential errors are visible in the form of
incorrect display of information. Final tests were performed
on the target image sets in the SEMI-CAVE environment.
Figure 3 shows an example of stitching using geometry
correction. The correct display confirms the correctness of
the geometry correction. It is worth emphasizing that on the
one hand, testing the display in the SEMI-CAVE environment
is convenient and relatively simple – "you can see the errors
of the software". On the other hand, incorrectly displayed
even small details (Figure 3.) significantly worsen the quality
of the entire image displayed and make immersion in VR
impossible.

The best test of the correct operation of the entire display
software (i.e. a set of drivers, displaying and stitching images,
correction of geometry and luminance / color) was to conduct
real research in the SEMI-CAVE environment.

The first project was carried out to develop a method
allowing the SEMI-CAVE installation to simulate selected
working environments in order to study their impact on the
psychophysiology of vision and the well-being of employees.
In the experiments the lighting properties were examined in
SEMI-CAVE environment. The pilot studies were carried out
on a group of 46 people aged 19-29. This type of research,

while ensuring a satisfactory immersion in a virtual
environment, and in the same time while using additional
measuring equipment (e.g. EEG) is only possible with the
use of a SEMI-CAVE virtual environment.

The wide range of studies conducted requires a
description in an independent article. The publication of the
results of the conducted research is under preparation.

The 3D model of the office room was designed in Unity
(Figure 4.). To increase the reality of the perceived
impressions, the details of the virtual environment were taken
care of – small pieces of equipment, rubbish on the floor, etc.
The same real and virtual elements (e.g. chairs) were also
added using the available space.

Additionally, after the completion of the research,
discussions were held with all participants about immersion
in virtual reality. Everyone rated the environment very highly.
They paid particular attention to the use of a combination of
real and virtual elements greatly enhancing the virtual
impressions.

Benefits of the VULKAN environment application

Usage Vulkan API in graphics applications has very
important and useful features. One of Vulkan’s biggest
advantages is that it supports a wide range of platforms. It
means that application development can be easily ported to
different computer platforms. Additionally, and this is also
very important, the efficient operation of the Vulkan API can
be implemented on a wide set of GPUs.

Fig. 4. Research scenarios for three colors of the environment: red, white and blue; upper row: computer visualization (graphics
software), bottom row: SEMI-CAVE reconstruction (photos from realization).

Fig. 3. The consequences of stitching with wrong geometry are visible on the example images of the Warsaw Saski Garden displayed
in SEMI-CAVE. a) enlarger detail before correction, b) the same detail after correction of geometry.

292 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024

One word can best describe Vulkan API and this word is
“explicit”. Developers have more explicit control over memory
management and synchronization methods. Also integration
with Platform Window System Interface is well designed and
more explicit compared to OpenGL API. Modern API
concepts like e.g. Command Buffers not only are based on
construction of modern GPU but also:
 It reduced the complexity of Vulkan driver – this

corresponds to minimalizing its overhead.
 It allows usage of multi-core CPUs in recording

Command Buffers.
 It allows for better control and scaling multi GPU systems.
In Vulkan API are introduced a lot of mechanisms that let
developers work as close to the hardware as the platform’s
operating system allows. For example, Command Buffers
are closely related to how the GPU hardware pipeline is
implemented. Memory management (by introducing Memory
Heaps and Memory Types) can be effectively implemented
in a simple way by the programmer. Only he really know how
his application will work and it is he who should can choose
the best way how to organize memory allocation and
deallocation.

VULKAN in an advanced graphical environment – some
practical aspects

Because Vulkan API design roots are different than
OpenGL (or other known techniques), programming
graphical application using this API, requires more attention
from the programmer. Very simple "Hello World" style
graphical application consists of approximately 1500 lines of
code. This is because Vulkan API introduces new concepts
like Physical Device and Logical Device, Queues and
Command Buffers, Synchronization Primitives, and last but
not least resources that can be useful in memory allocation –
Memory Types and Memory Heaps. And to be able to write
graphics application developer need to learn all of these
concepts and properly configure them. Vulkan API is
designed around the idea of minimal driver overhead and
one of the manifestations of that goal is that there is very
limited error checking in the API by default. Working with
Vulkan API drivers does not require runtime error checking,
and developers must follow what is defined in the standard
and available in the official examples in the repository.
Therefore, it is recommended to use and turn on the
application during the work and application Vulkan’s
validation layers. Those layers (and not only layers library are
included in LunarG’s Vulkan SDK [32]) are crucial in process
of developing any Vulkan-based applications. It can help and
make work easier when dealing with such low level and
complex graphics API. It is worth mentioning that the
popularity of the new API makes the availability of best
practices and tutorials created by other developers are easily
available on the web [33-35].

During development, it is good practice to register a
debug callback by using functions that can be found in
extension VK_EXT_debug_utils. This callback will receive
driver’s calls which will contain various non-performance
critical validation checks which it might perform. Also in this
extension is available functionality that can attach debug with
user names to various resources. Those names then are
available in a callback and provide information about
resources in e.g. debuggers’ tools like NVIDIA® Nsight™
Graphics [36] or RenderDoc [37].

Vulkan based application debuggers can help with
developing Vulkan-based application by "capture" rendered
frames and listed all recorded command buffer (with all its
content like pipelines, descriptor sets, and draw commands)
by showing them in a user-friendly way.

Another help to developers can be found in extension
VK_EXT_debug_marker (or newer VK_EXT_debug_utils)
and it is a functionality that can "annotate" your rendering
regions and in this way improving the debugging and profiling
experience when using debugging tools.

Something that is new for programmers (not only
graphics programmers) is manual memory management
which is deeply rooted in Vulkan API. In short words Vulkan
API requires a lot of boilerplate code. There is an additional
level of indirection (VkDeviceMemory is allocated separately
from creating VkBuffer/VkImage) and they must be bound
together. The application must also query the OS graphics
driver for checking supported Memory Heaps and Memory
Types, and recommended practice is to allocate bigger
chunks of memory and assign parts to particular resources
because there is a limit of allocation which the application
can do in one run. To help with memory management best
solution is using Vulkan® Memory Allocator [38]. This library
is simple and easy to integrate API which is open source with
MIT license and very popular with Vulkan’s developers.

Another thing which developer must learn is the proper
usage of synchronization primitives (for not only
performance), but this knowledge is shared with concurrent
CPU programming knowledge. The basic recommendation is
to minimize the use of barriers (a barrier may cause a GPU
pipeline flush), make sure to always use the minimum set of
resource usage flags, and use
VK_IMAGE_LAYOUT_UNDEFINED when the previous
content of the image is not needed.

Conclusions

In the paper we presented software solution for displaying
information in specific SEMI-CAVE installation of VR. We
decided to develop our own display control, based on self-
developed software. The software has been built using
Vulkan API. Vulkan API is widely used in the production of
computer games; we applied Vulkan in VR for the research
application.

We built our own display system using low level
programming. The new display system supporting the used
graphics cards has been developed. Our correction software
provides the control of the geometry at the single pixel level,
and also control over color and luminance of stitched parts.
The conducted experiments and real research in the
laboratory confirmed the correctness of the developed
software as well as the correctness of the proposed solution
of the SEMI-CAVE installation project. The participants of the
study confirmed the correctness of immersion into VR.

Independent analyses show the advantages of Vulkan –
low-level programming possibilities, full control over the
entire image generation process and the high efficiency of
graphics service [39]. Our experiments confirmed these
advantages also in SEMI-CAVE – a specific and specialized
CAVE environment.

On the other hand it is worth emphasizing that NVIDIA is
prefers to support expensive graphics cards with specific,
closed software, that is not more efficient but are compatible
with the corresponding software standard. Closed and non-
developmental solution for the programmer. We had to solve
this problem – a special, fully controlled, shader driver has
been developed, that allows displaying and synchronizing
images in SEMI-CAVE environment. We have accomplished
this through Vulkan API software and its properties.

ACKNOWLEDGEMENTS

This paper has been based on the results of a research
task carried out within the scope of the fourth stage of the
National Programme "Improvement of safety and working
conditions" partly supported in 2017–2019 within the scope

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 12/2024 293

of research and development --- by the Ministry of Science
and Higher Education / National Centre for Research and
Development. The Central Institute for Labour Protection --
National Research Institute is the Programme's main
coordinator. Project of SEMI-CAVE is still developed.

Authors: Prof. Dariusz J. Sawicki PhD. DSc., Warsaw University of
Technology, Institute of Theory of Electrical Engineering,
Measurement and Information Systems, Koszykowa 75, 00-662
Warsaw Poland, E-mail: dariusz.sawicki@pw.edu.pl. Łukasz
Izdebski PhD. Eng., JRS Software Warsaw Poland, E-mail:
lukasz.izdebski.jrs@gmail.com. Agnieszka Wolska PhD. DSc, prof.
CIOP-PIB, Mariusz Wisełka MSc. Eng. Central Institute for Labour
Protection - National Research Institute, Czerniakowska 16, 00-701
Warsaw Poland, E-mails: agwol@ciop.pl, marwi@ciop.pl.

REFERENCES

[1] TECH-SAFE-BIO - The Centre for Research and Development
on Work Processes and Safety Engineering, 2015. Available
online:
http://www.ciop.pl/CIOPPortalWAR/appmanager/ciop/en?_nfpb
=true&_pageLabel=P33200114301448620711504.

[2] Kim M.J., Wang X., Love P.E.D., Li H., Kang S.C., Virtual reality
for the built environment: a critical review of recent advances.
Journal of Information Technology in Construction. 2013, 18,
279-305.

[3] Zhou N.N., Deng Y.L., Virtual reality: A state-of-the-art survey.
International Journal of Automation and Computing. 2009, 6(4),
319-325.

[4] Muhanna M.A., Virtual reality and the CAVE: Taxonomy,
interaction challenges and research directions. Journal of King
Saud University – Computer and Information Sciences. 2015,
27(3), 344-361.

[5] Cruz-Neira C., Sandin D.J., DeFanti T.A., Kenyon R., Hart J.C.,
The CAVE: Audio Visual Experience Automatic Virtual
Environment. Communications of the ACM, 1992, 35(6), 64-72.

[6] Juarez A., Schonenberg B., Bartneck C., Implementing a Low-
Cost CAVE System Using the CryEngine2. Entertainment
Computing. 2010, 1(3-4), 157-164.

[7] CAVE Automatic Virtual Environment. Available online:
http://www.visbox.com/products/cave/.

[8] Nichols S., Petel H., Health and safety implications of virtual
reality: a review of empirical evidence. Applied Ergonomics.
2002, 33(3), 251-271.

[9] Sony 4K visualisation projectors drive Renault’s virtual ‘cave’.
Available online: https://assets.pro.sony.eu/Web/ngp/pdf/sony-
4k-visualisation-projectors-drive-renaults-virtual-cave.pdf.

[10] DeFanti T.A., Dawe G., Sandin D.J., Schulze J.P., Otto P.,
Girado J., Kuester F., Smarr L., Rao R., The StarCAVE, a third-
generation CAVE and virtual reality OptIPortal. Future
Generation Computer Systems. 2009, 25(2), 169-178.

[11] Fernandes K., Raja V., Eyre J. Cybersphere: The fully immersive
spherical projection system. Communications of the ACM. 2003,
46(9), 141-146.

[12] Mazikowski A., Lebiedź J., Image Projection in Immersive 3D
Visualization Laboratory. Proc. of 18th International Con-ference
on Knowledge-Based and Intelligent Information & Engineering
Systems - KES2014. Procedia Computer Science 2014, 35, 842-
850.

[13] Jacobson J., Lewis M., Game engine virtual reality with CaveUT.
Computer. 2005, 38(4), 79-82.

[14] Febretti A., Nishimoto A., Thigpen T., Talandis J., Long L., Pirtle
J.D., Peterka T., Verlo A., Brown M., Plepys D., Sandin D.,
Renambot L., Johnson A., Leigh J., CAVE2: a hybrid reality
environment for immersive simulation and infor-mation analysis.
Proc. SPIE 8649, The Engineering Reality of Virtual Reality,
2013, 864903.

[15] Leigh J., Johnson A., Renambot L., DeFanti T., Brown M., Jeong
B., Jagodic R., Krumbholz C., Svistula D., Hur H., Kooima R.,
Peterka T., Ge J., Falk C., Emerging from the CAVE:
Collaboration in Ultra High Resolution Environments. Proc. of
First International Symposium on Universal Communication,
Kyoto, Japan, 2007, June 14-15.

[16] Krumbholz C., Leigh J., Johnson A., Renambot L., Kooima R.,
Lambda Table: High Resolution Tiled Display Table for
Interacting with Large Visualizations. Proc. of Workshop for
Advanced Collaborative Environments (WACE),. Redmond,
Washington, USA 2005.

[17] Sajadi B., Majumder A., Auto-calibration of multi-projector
CAVE-like immersive environments. IEEE Trans. Visual
Comput. Graphics. 2011, 18(3), 381-393.

[18] CAVE VR course 2014. Available online:
http://moodle.epfl.ch/pluginfile.php/1522455/mod_resource/con
tent/7/Th_RB_NW_S3_CAVE_2017.pdf.

[19] Wolska A., Glare as a specific factor in the working environment.
Przegląd Elektrotechniczny. 2013, 89(1), 142-144.

[20] Sawicki D., Wolska A., The unified semantic glare scale for GR
and UGR indexes. Proc. of the 2016 IEEE Lighting Conference
of the Visegrad Countries (Lumen V4). 13-16.09.2016 Karpacz.
DOI: 10.1109/LUMENV.2016.7745536

[21] Sawicki, D., Izdebski Ł., Wolska A., Wisełka M., Geometrical
Picture Integration in Semi-Cave Virtual Reality. Proc. of the
International Conference on Computer-Human Interaction
Research and Applications (CHIRA 2018). Seville, Spain, 19-21
September, 2018, 100-107.

[22] Slater M., A Note on Presence Terminology, 2003, Available
online:
https://www.researchgate.net/publication/242608507_A_Note_
on_Presence_Terminology.

[23] Augustynowicz M., Sawicki D., Reconstruction of the relative
coordinates of image using projective geometry. Przegląd
Elektrotechniczny. 2016, 92(1), 208-211.
doi:10.15199/48.2016.01.49

[24] Sawicki D., Wolska A., Wisełka M., Ordysinski Sz., Easing
Function as a Tool of Color Correction for Display Stitching in
Virtual Reality. Proc. of the 20th International Conference on
Image Analysis and Processing (ICIAP 2019). Lecture Notes in
Computer Science, 2019, 11752, 549-559. Springer. DOI:
10.1007/978-3-030-30645-8_50

[25] Mokrzycki W.S., Tatol M., Color difference ΔE : a survey.
Machine Graphics and Vision, 2011, 20(4), 383-411.

[26] Khronos Vulkan Registry, Available online:
https://www.khronos.org/registry/vulkan.

[27] Vulkan Tutorial, Available online: https://vulkan-
tutorial.com/Introduction.

[28] Bailey, M., Cunningham S., Graphics Shaders: Theory and
Practice, Second Edition. A K Peters/CRC Press 2011.

[29] Sellers G., Kessenich J., Vulkan Programming Guide: The
Official Guide to Learning Vulkan. Addison-Wesley 2016.

[30] Sellers G., Wright R.S. Jr., Haemel N., OpenGL Superbible:
Comprehensive Tutorial and Reference (7th Edition). Addison-
Wesley Professional 2015.

[31] Sawicki D., Izdebski Ł., Wolska A., Wisełka M., Luminance and
color correction for display stitching in Semi-Cave virtual reality.
Proc. of the International Conference on Computer-Human
Interaction Research and Applications (CHIRA 2019). Vienna,
Austria, 20-21 September, 2019, 137-144.

[32] LunarG, Available online: https://www.lunarg.com/vulkan-sdk/.
[33] SaschaWillems / Vulkan. Available online:

https://github.com/SaschaWillems/Vulkan .
[34] Intel. API without Secrets: Introduction to Vulkan* Part 1: The

Beginning. Available online:
https://software.intel.com/content/www/us/en/develop/articles/a
pi-without-secrets-introduction-to-vulkan-part-1.html.

[35] Vulkan API samples, Available online:
https://github.com/KhronosGroup/Vulkan-
Samples/tree/master/samples#api-samples.

[36] NVIDIA Nsight Graphics, Available online:
https://developer.nvidia.com/nsight-graphics.

[37] RenderDoc, Available online: https://renderdoc.org.
[38] Vulkan® Memory Allocator, Available online:

https://gpuopen.com/vulkan-memory-allocator/.
[39] Lujan M., Baum M., Chen D., Zong Z., Evaluating the

Performance and Energy Efficiency of OpenGL and Vulkan on a
Graphics Rendering Server. Proc. of International Conference
on Computing, Networking and Communications (ICNC 2019).
Vol.1, pp. 777-781.

