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Streszczenie. Cave Automatic Virtual Environment (CAVE) to przykład instalacji multimedialnej umożliwiającej postrzeganie rzeczywistości wirtualnej 
(VR) w jej najlepszej postaci. Celem artykułu jest przedstawienie specjalistycznej instalacji tego typu (SEMI-CAVE), w której opracowano autorskie 
oprogramowanie do wyświetlania informacji z wykorzystaniem środowiska Vulkan. Zwrócono uwagę na korzyści, problemy i dobre praktyki 
programistyczne. Eksperymenty i badania przeprowadzone w SEMI-CAVE potwierdziły zalety przyjętego rozwiązania. (Sterownik graficzny dla 
rzeczywistości wirtualnej typu CAVE w środowisku Vulkan). 
  
Abstract. Cave Automatic Virtual Environment (CAVE) is an example of a multimedia installation that allows perceiving virtual reality (VR) in its best 
form. The aim of the article is to present a specialized installation of this type (SEMI-CAVE), in which authors’ own display software based on Vulkan 
environment was developed. The benefits, problems and good programming practices were also highlighted. Experiments and conducted research in 
SEMI-CAVE laboratory have confirmed the advantages of the proposed solution. 
 
Słowa kluczowe: środowisko wirtualne, zanurzenie w wirtualną rzeczywistość, wirtualna rzeczywistość typu CAVE 
Keywords virtual environment, immersive VR, CAVE VR 
 
 
Introduction 

The virtual reality (VR) has become one of the most 
important achievements of computer science in recent years. 
In many areas of science, the use of VR techniques not only 
speeds up the study, but also facilitates them or sometimes 
simply allows conducting the research.  

The considered realization – SEMI-CAVE – is an 
example of multimedia laboratory where VR is applied to 
specialized research. It is one of the laboratories which were 
built in the scope of project Tech-Safe-Bio [1], which was 
realized in recent years in Central Institute for Labour 
Protection - National Research Institute (CIOP-PIB). The 
state-of-the-art laboratories built in the Tech-Safe-Bio project 
are adjusted to conduct interdisciplinary research focused 
on, widely understood, protection of health and safety of 
workers. The SEMI-CAVE laboratory allows, among other 
things, to conduct research on the impact of the physical 
environment on employees. In this regard, virtual reality 
techniques and computer simulations offers practically un-
limited research possibilities.  

OpenGL (Open Graphics Library) is a programming tool 
for creating 2D and 3D graphics. It was created in the 90s of 
the last century and was popularized thanks to the work of 
Silicon Graphics Inc. Currently, OpenGL is open source 
software developed by the Khronos Group and is considered 
as the de facto industry standard. Vulkan is a similar tool for 
creating 3D graphics, developed since 2016 by the same 
specialists from the Khronos Group. Vulkan is a low-
overhead tool, it is considered as a "thin graphic API" which 
gives the same possibilities as OpenGL but using less 
resource. Initially, Vulkan was treated as the next generation 
of OpenGL for computer game programming. However, both 
tools are currently being developed and used in a wide range 
of different applications. The most important advantage of 
Vulkan is that it allows the programmer to work at a lower 
level of programming and gives much better – full control 
over the graphics creation process.  

The use of VR for a wide range of research requires 
precise control of the process of building a virtual world and 
effective display of virtual information. The need for full 
control of the graphics creation process in a specific SEMI-
CAVE environment resulted in the use of Vulkan API. It is an 
advanced and complicated solution, with a non-obvious way 
of solving many programming tasks. It is probably the first 
time this tool has been used in Cave installations – the 

authors are not aware of any publications describing such 
examples. Experiments and conducted research in SEMI-
CAVE laboratory have confirmed the advantages of Vulkan 
API and the suitability of this software for specialized 
applications. 

The main aim of the article is to present how the Vulkan 
API was used to create display software in the SEMI-CAVE 
environment. To make the most of the hardware capabilities, 
we have developed own – proprietary solution of the display 
software using shader language programming. In the article, 
we also tried to include practical comments and advice 
resulting from our experiences. 
 
Virtual Reality in CAVE System – The Short Survey 

CAVE (Cave Automated Virtual Environment) is an 
implementation of virtual reality (VR) in which the participant 
(recipient of VR experiences) is in a small room. On its walls 
(often also on the floor and ceiling) an image of reality is 
projected into which the participant is immersed. The number 
of publications on CAVE and VR is very large. On the basis 
of review articles [2-4], several basic categories of technical 
solutions for CAVE systems can be distinguished. The first 
prototype of a CAVE type solution was built in 1992 [5]. It had 
5 translucent walls (including the ceiling and the floor) on 
which the image was projected from the outside (rear 
projection). This installation was made on the basis of a cube 
with a side of about 2.10 m – not giving the participant too 
much free space. However, the entire installation took up 
much more space due to the external projectors and the 
supporting structure [5]. The need for a very large space to 
implement CAVE virtual reality with rear projection is the 
main disadvantage of such a solution. In later projects, six 
walls were used most often, but different constructions are 
also known. Single wall installation in the image resolutions 
of the range from 1024x768 [6] to 6000x4096 pixels [7], two 
walls [8], four walls [7] and five walls [9]. The most advanced 
and the most expanded solution today includes projecting 
onto 15 side walls plus the ceiling and the floor [10]. There 
were also solutions using: the sphere on the surface of which 
the projection is made [11] or solutions connecting the 
sphere and the cube [12]. 

Apart from the rear projection, the front projection (inside 
the CAVE object) onto the walls of the laboratory is also used 
[13]. This makes it possible to obtain a much larger CAVE 
area with a comparable size of the entire installation.  
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CAVE2 is a VR implementation in which the walls of the 
VR space are covered with LCD monitors [14]. The 
disadvantage of such a solution is the physical gaps between 
the screens at the point of their connection.  This does not 
allow for full immersion into VR [15,16].  

The presentation method of graphical information is the 
main problem of all CAVE solutions. Because of known 
difficulties, the special attention is paid on image stitching 
[17]. The visual properties related to the position of the 
observer and the quality of image stitching, are factors that 
influence the quality of immersion into VR very strongly [18].  

Additional problems may arise in CAVE installations: 
users may experience severe and long-lasting visual 
disturbances. Sometimes they may feel isolated or confused 
and even panicked [8].  
 
Planned research – expectations related to virtual reality 

The aim of building the SEMI-CAVE installation was to 
use virtual reality to create different visual environments in 
workplaces. It was assumed that it is possible to study the 
influence of various parameters of the created environment 
on the broadly understood psychophysiology of vision (e.g. 
eye fatigue, psychomotor performance, visual performance, 
well-being, emotions, and human alertness). The study of 
human reactions to various visual stimuli and lighting 
parameters is important both for the safety of people at work 
as well as for their health and well-being, which indirectly 
translates into better work efficiency. Additional 
supplementation of the virtual space with real elements 
(desks, chairs, work tools, etc.) makes it possible to blur the 
boundary between the real and the virtual world, and thus 
definitely improves the immersion into VR. On the other 
hand, the necessity to use ancillary equipment (such as an 
eye tracker or EEG recording system) used in alertness level 
or psychomotor testing requires additional available space. 
Another type of research that has been considered in a virtual 
environment is research on discomfort glare from LED 
sources. This phenomenon is most often the result of the 
appearance of a light source in the field of view, the 
luminance of which is much higher than the surroundings 
luminance [19]. The use of VR with real elements is very 
convenient for glare research, as it gives the opportunity to 
simulate different lighting and working conditions, as well as 
various methods of assessing the phenomenon [20].  

Such widely understood research tasks require a 
relatively large area of the room. This would be difficult to do 
in a typical very small CAVE installation. When designing 
SEMI-CAVE, a solution was selected that supports a 
relatively large space. This allowed us to meet the 
expectations related to the research plans. 
 
SEMI-CAVE – realization 

The SEMI-CAVE virtual reality installation was 
implemented in a room with dimensions of 8.6m x 4.3m x 6m. 
The projection is realized by projecting the image directly 
onto 4 walls of the room (front projection). The images are 
projected by 6 projectors: two for longer walls and one for 
shorter walls (Figure 1). Optical systems of the projectors, 
made in the short throw technology works with the use of 
perspective correction – Lens Shift and Keystone. It allows 
shadowless projection, when approaching a distance of 
about 1m to the wall, people with a height of 1.7m. The 
obtained distance of the "shadowless" approach (1m) is a 
compromise resulting from the use of projectors at a certain 
price. On the other hand, one may wonder if this is a sufficient 
distance. In the SEMI-CAVE installation, such conditions of 
shadow-free operation allow users to have an area of over 
2m wide and over 6m long. It is a relatively large space that 
meets the design expectations. Thus, it is a space that would 

not be possible to achieve in a traditional, small CAVE 
installation space. The images are generated in our 
computer by the set of three high performance PNY 
professional graphics cards with NVIDIA graphic processor 
unit (GPU). Each card supports two images (two projectors). 
The specific conditions of SEMI-CAVE installation dictated 
the need of self-developed software (including appropriate 
drivers). Only such software gives us full control over the 
developed whole solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The method of displaying images in the SEMI-CAVE 
installation (based on [21]). Connections of displayed images: on 
longer walls, images from adjacent projectors (images 1 and 2, 
images 4 and 5) overlap (50 pixels); in the corners of the room 
(pictures 2 and 3; 3 and 4; 5 and 6; 6 and 1) images are projected 
"to joint" (to the edge / image associated with the corner of the room). 
 
The stitching problem in SEMI-CAVE virtual reality 

The quality of the displayed image in CAVE installations 
is a key issue that determines the possibility of getting the 
best possible immersion into VR created inside the 
installation [22]. Particular attention is paid to the problems 
of stitching pictures [17]. 

The first important task is to correct the geometry so that 
the projected, adjacent images "fit together" and create one 
whole – one virtual world. Additionally, the problem is made 
worse by the passage of time – "aging" of the structure and 
micro-vibrations change (spoil) the display geometry. The 
geometry correction is, in fact, a properly selected 
transformation of a quadrilateral into a quadrilateral [23].  

The second important task is to correct the color 
displayed by the projectors. The individual differences 
between the projectors used and their individual aging create 
small color changes. Unfortunately, such changes are 
registered by the sense of sight and have a negative impact 
on the quality of immersion into VR [24]. The measure of 
color mismatch is the difference in color coordinates [25].  

Both corrections must be made while the information is 
displayed. This way effective correction of geometry and 
color for image stitching is a very important goal of the 
software we have developed for displaying information in the 
SEMI-CAVE environment. 
 
OpenGL and VULKAN environment 

The basic implementation problem in the SEMI-CAVE 
was the choice of the programming environment for software 
development. Although CAVE environments have been 
known for many years, the creators rarely present the 
software they have developed and used. Most often in 
publications we find only information about the spectacular 
possibilities of VR. Installation of SEMI-CAVE is a specific 
solution and the authors decided to develop their own display 
control, based on self-developed software. It was decided to 
use the Vulkan environment [26,27]. Vulkan API is a low-
level, cross-platform application programming interface 
supporting the generation of 3D graphics. It is a tool 
developed by the Khronos Group. Vulkan API is mostly 
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adopted (at the time of writing this article) in game industry, 
and well known in the game engines like Unreal Engine 4, 
Unity, CryEngine etc. Other industries slowly are adopting 
this API in their applications. However, many developers use 
documented experience from game programming in their 
applications, showing the great usefulness of Vulkan. 

Vulkan API, in contrast to the previous generation of 
graphical APIs such as OpenGL, is intended and designed 
for more advanced and experienced graphics programmers. 
It provides, through its interfaces, more low-level access to 
the graphics card resources and the rendering pipeline. This 
can lead to a large number of potential pitfalls waiting for the 
programmer. Therefore, experience and strict adherence to 
the standard are very important. On the other hand, the 
experience of programmers from the Khronos Group meant 
that Vulkan API gives the possibility of convenient and 
effective programming at the application level, similar to 
OpenGL. It gives precise control over the communication of 
the 3D application with the window operating system 
(Windows). It allows, among other things, to gain direct 
control over the association of specific application windows 
with the display of information from selected graphics cards. 
This is particularly important in the case of multiscreen 
display implemented by several independent graphics cards 
– which is particularly important in the SEMI-CAVE 
installation.  
 

Effective use of graphics card processors 
Graphics cards used in the SEMI-CAVE installation have 

a very large application potential. However, their effective 
use is not an easy task. After analyzing the possibilities of 
programming these cards, it was decided that the entire 
image display system (display support and subsystems for 
geometry and color correction) would be fully implemented in 
shader language solution. It is worth emphasizing that this 
technique is very effectively supported by Vulkan API. 

 
Vertex / Index Buffer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Framebuffer 
 

Fig. 2. Tasks of rendering pipeline described by modern shaders and 
implemented in hardware by GPU cores. On the base of 
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics 

 
Modern graphics cards (based on modern graphics 

processors) have a multi-core structure. The number of cores 
in the most powerful graphics cards exceeds 1000 (reaching 

even 10 000 for the latest products). Cores are highly 
optimized for generating 3D graphics and for general-
purpose computing. All cores are clocked equally and are 
independent computing units. Performance studies show 
that the number of cores cannot be treated as a decisive 
parameter for the effectiveness of a graphics card (in a 
simple way), because efficiency is also strongly influenced 
by communication handling and memory performance. 
However, the greater the number of cores, the more parallel 
subprocesses can be run to handle graphics generation. The 
work of the cores is managed by the hardware task 
scheduler, whose task is to correctly divide the work into 
many processes and assign each of the processes to the 
appropriate GPU core. 

Shader [28] is a relatively short program that is executed 
directly by the graphics card processor (and only by this 
processor). The shader is written in such a way as to use the 
hardware capabilities of the card, which is provided by the 
support of the parallel architecture of the processor cores, in 
the most effective way. A typical set of tasks in the rendering 
pipeline (supported by OpenGL and Vulkan) is shown in 
Figure 2. All operations have a hardware representation in 
the graphics card processor. On the other hand, because 
Vulkan is a continuation of OpenGL (by the same company), 
most of the procedures in them can be implemented 
interchangeably. This has been used effectively in the 
software for SEMI-CAVE. 

It was assumed that the software would work in two 
modes. 
 Working (standard) mode, when the images are 

displayed, and the normal use of a SEMI-CAVE 
installation is taking place. Both corrections must be 
made while the information is displayed.  

 Editing mode, during which geometry and color can be 
corrected. In this mode, we can define the operating 
conditions of both corrections and see the consequences 
of their operation.  

In the working mode, the application should be done in the 
most effective way, using the computer resources as little as 
possible. 
 
Results – the shader driver developed for SEMI-CAVE 
installation 

Vulkan API can offer comparable functionality to NVIDIA 
graphic cards with some additional logic to help with 
configuration multi GPU and multi-desktop environment. To 
achieve this, the XML configuration file was developed in 
which users enter data that describe the current system 
configuration (desktop and hardware mapping which can be 
found in NVIDIA Control Panel). This configuration file also 
contains information about the location of virtual cameras 
that are used for rendering SEMI-CAVE environment. 

The graphical application for displaying information and 
also for stitching images in working mode has been 
implemented using GPU shaders. The stitching configuration 
is made using the XML configuration file and the final 
software has been prepared in the Visual Studio using the 
Vulkan environment [27,29].  

To produce a smooth continuous transition of projected 
desktop images various techniques were used. All those 
techniques were using hardware features and for fixing no 
ideal position and orientation of projectors in-room images 

The first step is the configuration of Vulkan’s projection of 
the virtual camera. As rendered images proportion and 
resolution are prepared too much projector’s resolution, so 
application is filling the front face of cull volume and model 
view projection matrix of the virtual camera is an identity 
matrix. 

Input Assembler

Vertex Shader

Tessellation

Geometry Shader

Rasterization 

Fragment Shader

Color Blending
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Desktop projection on walls was selected to receive the 
greatest common area. Subspace which was outside of the 
common area are organized by clipping planes. This 
mechanism realized by Vulkan API allows an application to 
provide information about additional clipping planes, against 
which rendered geometry will be clipped. Each user-
specified clip plane (up to a minimum of 8 planes) can be 
turned on and off separately. For each of them, four plane 
equation coefficients can be provided using Vulkan API 
(Listing 1). 

 
Listing 1.  
 
 gl_ClipDistance[0] = dot(pushConsts.cull_plane[0],gl_Position); 
 gl_ClipDistance[1] = dot(pushConsts.cull_plane[1],gl_Position); 
 gl_ClipDistance[2] = dot(pushConsts.cull_plane[2],gl_Position); 
 gl_ClipDistance[3] = dot(pushConsts.cull_plane[3],gl_Position); 

 
Color correction is done on two adjacent areas, and the 

size of those left and right areas are defined by the user in 
the XML configuration file. The correction was implemented 
in a fragment shader. The rendered image was divided into 
the 3 vertical areas (Listing 2). 

 
Listing 2.  
 
 vec3 mainColor = texture( texSampler, fragTexCoord ).xyz; 
 vec3 one = vec3(1.0,1.0,1.0); 
 float eqLineL = fragBlendLines.z; 
 float eqLineR = fragBlendLines.w; 
 float eqStepL = step(gl_FragCoord.x, eqLineL); 
 float eqStepR = step(gl_FragCoord.x, eqLineR); 
 float eqCenter = (1.0 - eqStepL)*(1.0 - eqStepR); 
 float smoothL = 1.0 - smoothstep(0.0, eqLineL, gl_FragCoord.x); 
 vec3 eqBlendL = one + smoothL*(fragColor.rgb - one); 
 float smoothR = 1.0 - smoothstep(0.0, eqLineR, gl_FragCoord.x); 
 vec3 eqBlendR = one + smoothR*(fragColor.rgb - one); 
 vec3 eqSumColor = vec3(eqCenter,eqCenter,eqCenter) +  
   (eqStepL*eqBlendL) + (eqStepR*eqBlendR); 
 vec3 finalColor = mainColor * eqSumColor; 

 
Blending two adjacent and overlapped areas of projected 

desktop images was done also fragment shader. The 
rendered image was divided also into the 3 vertical areas 
(separate from color correction). Users can define the size of 
those areas in the XML configuration file. Blending can be 
turned on the left and right areas separately, and choose if 
linear, smooth interpolation is used to blend the current color 
of the rendered pixel with black color (Listing 3). 

 
Listing 3.  
 
 float blendLineL = fragBlendLines.x; 
 float stepL = step(gl_FragCoord.x, blendLineL ); 
 float blendLineR = fragBlendLines.y; 
 float stepR = step(gl_FragCoord.x, blendLineR ); 
 float smoothstepL = smoothstep(0.0, blendLineL, gl_FragCoord.x); 
 float smoothStepR = smoothstep(0.0, blendLineR, gl_FragCoord.x); 
 float mSumBlend = (1.0-stepL)*(1.0-stepR) +  
   (stepL*smoothstepL)+(stepR*smoothStepR); 
 outColor = mFinalColor * mSumBlend; 

 
On the basis of the procedure prepared for displaying 

information, an application carrying out appropriate tasks of 
correction has been prepared. The software has been 
implemented in Visual Studio using the OpenGL libraries 
[30], and works on the level of shader drivers [28]. Both 
modes (working mode and editing mode) use a common 
code associated with managing the display of windows in a 
Windows environment. All implemented operations within the 
appropriate shader have hardware representations in the 
graphics card processor. On the other hand, the division into 

appropriate procedures in OpenGL and Vulkan was 
designed to achieve the maximum performance of a given 
processor. Moreover, since Vulkan and OpenGL were 
designed by the same consortium, most of the procedures in 
them can be used interchangeably. This has been effectively 
applied in the SEMI-CAVE software.  

In editing mode application is using OpenGL. This was 
made for faster iterations over developing stitching editor 
used in research. The same effects can be achieved with a 
Vulkan based editor, but time constraints have forced a well-
known approach to be used.  

According to the assumptions, the correction software 
meets the following requirements. 
 Software support is implemented by means of a simple, 

intuitive interface enabling easy shape correction. 
 The ability to visually check the correctness of the 

proposed geometry. 
 In the correction of color and luminance, the software will 

support the measurements of proper parameters. 
 The software will include a convenient and effective 

communication interface with the user.  
We analyzed the image stitching problem and assumed that 
geometry correction would be performed first. Color 
correction will only be performed when all images are 
geometrically correct. Details of interface features of the 
prepared software for geometrical and luminance/color 
correction have been described in [21] and [31] respectively. 

Vulkan is a next-generation open standard API that 
provides high-performance, cross-platform access to modern 
GPUs. Unlike, for example, OpenGL, it was designed with 
this in mind as the foundation for how modern graphics cards 
are built and how they are communicating with operating 
systems. Those guidelines provide a multi-threading-centric 
design to leverage modern multi-core CPUs and provide 
access to GPUs via multiple parallel command queues.  

Communication between application and shaders are 
made by a feature which is available in Vulkan API called 
push constants. Push constants allow sending a small 
amount of data to any shader, in a very simple and effective 
way. Those data are stored in the Vulkan’s Command Buffer 
itself.  

An alternative approach will be using Vulkan’s Uniform 
Buffers. To be able to access Uniform Buffer in the shader is 
accomplished through what is called in Vulkan API a 
descriptor. Usage of descriptors consists of three parts: 
 Specify a descriptor layout during pipeline creation. 
 Allocate a descriptor set from a descriptor pool. 
 Bind the descriptor set during rendering.  
The next step is tasks that involve Uniform Buffer itself, which 
can be described as: 
 Creation of Uniform Buffer in specific memory type 

(depend on the size of data and usage). 
 Copy data to the buffer memory. 
 Depend on memory type explicit usage of memory barrier 

primitives.  
Fortunately, data needed for control culling color correction 
and blending viewports used in Sami-Cave application is 
small enough that fit in Push Constant data limits (minimum 
supported limit is 128 bytes – defined by the standard [29]). 
This approach is easier to implement and does not result in 
a decrease in real-time performance. 

The shader’s code and communication are designed to 
be as thin as possible, which means that the overhead 
introduced by them on the CPU and GPU was as low as 
possible. Consequently, they could be used as an almost 
invisible intermediate layer between the hardware and future 
applications built on top of this approach. 
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Tests of the developed software  

Initial tests for correct operation were carried out at the 
stage of application programming in the Visual Studio 
environment. Then, using the prepared images, the 
correctness was checked in the target SEMI-CAVE 
environment. Testing graphical applications has the 
advantage that potential errors are visible in the form of 
incorrect display of information. Final tests were performed 
on the target image sets in the SEMI-CAVE environment. 
Figure 3 shows an example of stitching using geometry 
correction. The correct display confirms the correctness of 
the geometry correction. It is worth emphasizing that on the 
one hand, testing the display in the SEMI-CAVE environment 
is convenient and relatively simple – "you can see the errors 
of the software". On the other hand, incorrectly displayed 
even small details (Figure 3.) significantly worsen the quality 
of the entire image displayed and make immersion in VR 
impossible. 

The best test of the correct operation of the entire display 
software (i.e. a set of drivers, displaying and stitching images, 
correction of geometry and luminance / color) was to conduct 
real research in the SEMI-CAVE environment.  

The first project was carried out to develop a method 
allowing the SEMI-CAVE installation to simulate selected 
working environments in order to study their impact on the 
psychophysiology of vision and the well-being of employees. 
In the experiments the lighting properties were examined in 
SEMI-CAVE environment. The pilot studies were carried out 
on a group of 46 people aged 19-29. This type of research, 

while ensuring a satisfactory immersion in a virtual 
environment, and in the same time while using additional 
measuring equipment (e.g. EEG) is only possible with the 
use of a SEMI-CAVE virtual environment.  

The wide range of studies conducted requires a 
description in an independent article. The publication of the 
results of the conducted research is under preparation. 

The 3D model of the office room was designed in Unity 
(Figure 4.). To increase the reality of the perceived 
impressions, the details of the virtual environment were taken 
care of – small pieces of equipment, rubbish on the floor, etc. 
The same real and virtual elements (e.g. chairs) were also 
added using the available space.  

Additionally, after the completion of the research, 
discussions were held with all participants about immersion 
in virtual reality. Everyone rated the environment very highly. 
They paid particular attention to the use of a combination of 
real and virtual elements greatly enhancing the virtual 
impressions. 
 
Benefits of the VULKAN environment application 

Usage Vulkan API in graphics applications has very 
important and useful features. One of Vulkan’s biggest 
advantages is that it supports a wide range of platforms. It 
means that application development can be easily ported to 
different computer platforms. Additionally, and this is also 
very important, the efficient operation of the Vulkan API can 
be implemented on a wide set of GPUs. 

   
 

   
 
Fig. 4. Research scenarios for three colors of the environment: red, white and blue; upper row: computer visualization (graphics 
software), bottom row: SEMI-CAVE reconstruction (photos from realization). 

   
 
Fig. 3. The consequences of stitching with wrong geometry are visible on the example images of the Warsaw Saski Garden displayed 
in SEMI-CAVE. a) enlarger detail before correction, b) the same detail after correction of geometry.  
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One word can best describe Vulkan API and this word is 
“explicit”. Developers have more explicit control over memory 
management and synchronization methods. Also integration 
with Platform Window System Interface is well designed and 
more explicit compared to OpenGL API. Modern API 
concepts like e.g. Command Buffers not only are based on 
construction of modern GPU but also:  
 It reduced the complexity of Vulkan driver – this 

corresponds to minimalizing its overhead. 
 It allows usage of multi-core CPUs in recording 

Command Buffers. 
 It allows for better control and scaling multi GPU systems.  
In Vulkan API are introduced a lot of mechanisms that let 
developers work as close to the hardware as the platform’s 
operating system allows. For example, Command Buffers 
are closely related to how the GPU hardware pipeline is 
implemented. Memory management (by introducing Memory 
Heaps and Memory Types) can be effectively implemented 
in a simple way by the programmer. Only he really know how 
his application will work and it is he who should  can choose 
the best way how to organize memory allocation and 
deallocation. 
 
VULKAN in an advanced graphical environment – some 
practical aspects 

Because Vulkan API design roots are different than 
OpenGL (or other known techniques), programming 
graphical application using this API, requires more attention 
from the programmer. Very simple "Hello World" style 
graphical application consists of approximately 1500 lines of 
code. This is because Vulkan API introduces new concepts 
like Physical Device and Logical Device, Queues and 
Command Buffers, Synchronization Primitives, and last but 
not least resources that can be useful in memory allocation – 
Memory Types and Memory Heaps. And to be able to write 
graphics application developer need to learn all of these 
concepts and properly configure them. Vulkan API is 
designed around the idea of minimal driver overhead and 
one of the manifestations of that goal is that there is very 
limited error checking in the API by default. Working with 
Vulkan API drivers does not require runtime error checking, 
and developers must follow what is defined in the standard 
and available in the official examples in the repository. 
Therefore, it is recommended to use and turn on the 
application during the work and application Vulkan’s 
validation layers. Those layers (and not only layers library are 
included in LunarG’s Vulkan SDK [32]) are crucial in process 
of developing any Vulkan-based applications. It can help and 
make work easier when dealing with such low level and 
complex graphics API. It is worth mentioning that the 
popularity of the new API makes the availability of best 
practices and tutorials created by other developers are easily 
available on the web [33-35].  

During development, it is good practice to register a 
debug callback by using functions that can be found in 
extension VK_EXT_debug_utils. This callback will receive 
driver’s calls which will contain various non-performance 
critical validation checks which it might perform. Also in this 
extension is available functionality that can attach debug with 
user names to various resources. Those names then are 
available in a callback and provide information about 
resources in e.g. debuggers’ tools like NVIDIA® Nsight™ 
Graphics [36] or RenderDoc [37].  

Vulkan based application debuggers can help with 
developing Vulkan-based application by "capture" rendered 
frames and listed all recorded command buffer (with all its 
content like pipelines, descriptor sets, and draw commands) 
by showing them in a user-friendly way.  

Another help to developers can be found in extension 
VK_EXT_debug_marker (or newer VK_EXT_debug_utils) 
and it is a functionality that can "annotate" your rendering 
regions and in this way improving the debugging and profiling 
experience when using debugging tools. 

Something that is new for programmers (not only 
graphics programmers) is manual memory management 
which is deeply rooted in Vulkan API. In short words Vulkan 
API requires a lot of boilerplate code. There is an additional 
level of indirection (VkDeviceMemory is allocated separately 
from creating VkBuffer/VkImage) and they must be bound 
together. The application must also query the OS graphics 
driver for checking supported Memory Heaps and Memory 
Types, and recommended practice is to allocate bigger 
chunks of memory and assign parts to particular resources 
because there is a limit of allocation which the application 
can do in one run. To help with memory management best 
solution is using Vulkan® Memory Allocator [38]. This library 
is simple and easy to integrate API which is open source with 
MIT license and very popular with Vulkan’s developers. 

Another thing which developer must learn is the proper 
usage of synchronization primitives (for not only 
performance), but this knowledge is shared with concurrent 
CPU programming knowledge. The basic recommendation is 
to minimize the use of barriers (a barrier may cause a GPU 
pipeline flush), make sure to always use the minimum set of 
resource usage flags, and use 
VK_IMAGE_LAYOUT_UNDEFINED when the previous 
content of the image is not needed. 

 
Conclusions 

In the paper we presented software solution for displaying 
information in specific SEMI-CAVE installation of VR. We 
decided to develop our own display control, based on self-
developed software. The software has been built using 
Vulkan API. Vulkan API is widely used in the production of 
computer games; we applied Vulkan in VR for the research 
application.  

We built our own display system using low level 
programming. The new display system supporting the used 
graphics cards has been developed. Our correction software 
provides the control of the geometry at the single pixel level, 
and also control over color and luminance of stitched parts. 
The conducted experiments and real research in the 
laboratory confirmed the correctness of the developed 
software as well as the correctness of the proposed solution 
of the SEMI-CAVE installation project. The participants of the 
study confirmed the correctness of immersion into VR. 

Independent analyses show the advantages of Vulkan – 
low-level programming possibilities, full control over the 
entire image generation process and the high efficiency of 
graphics service [39]. Our experiments confirmed these 
advantages also in SEMI-CAVE – a specific and specialized 
CAVE environment.  

On the other hand it is worth emphasizing that NVIDIA is 
prefers to support expensive graphics cards with specific, 
closed software, that is not more efficient but are compatible 
with the corresponding software standard. Closed and non-
developmental solution for the programmer. We had to solve 
this problem – a special, fully controlled, shader driver has 
been developed, that allows displaying and synchronizing 
images in SEMI-CAVE environment. We have accomplished 
this through Vulkan API software and its properties. 
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