doi:10.15199/48.2024.02.18

Design of A Beef Freshness Detector based on Color and Scent with the Mamdani Fuzzy Method

Abstract. Currently, the identification of beef is still done manually either through observation or press the meat to know the beef texture. This method has many disadvantages if the consumers are not thorough in differentiating the beef freshness quality. The design of a system that can identify beef quality by utilizing the characteristic of the meat rotting process is proposed. The beef's freshness can be detected through the smell or the scent of the beef. It is also can be detected through color. The fresh beef scent will have a different smell from the rotting beef scent, so the changing color. The proposed design is the beef freshness detector system using two kinds of sensor which is a Gas Sensor, MQ-136 and MQ-137 to detect the beef scent and a color sensor (TCS3200) to detect beef color change. It is also used a microcontroller as the main unit of data acquisition and uses Mamdani Fuzzy Method as to decision-making system for the acquisition of data from the sensors. The overall test result in the system has an 86,67% probability of success with an error rate of 13,3% from 15 trials.

Streszczenthe ie. Obecnie identyfikacja wołowiny nadal odbywa się ręcznie, poprzez obserwację lub wyciskanie mięsa w celu poznania tekstury wołowiny. Metoda ta ma wiele wad, jeśli konsumenci nie są wnikliwi w różnicowaniu jakości świeżości wołowiny. Zaproponowano projekt systemu umożliwiającego identyfikację jakości wołowiny na podstawie charakterystyki procesu gnicia mięsa. Świeżość wołowiny można rozpoznać po zapachu lub zapachu wołowiny. Można to również wykryć poprzez kolor. Zapach świeżej wołowiny będzie miał inny zapach niż zapach gnijącej wołowiny, a więc zmienia kolor. Proponowany projekt to system wykrywania świeżości wołowiny wykorzystujący dwa rodzaje czujników: czujnik gazu, MQ-136 i MQ-137 do wykrywania zapachu wołowiny oraz czujnik koloru (TCS3200) do wykrywania zmiany koloru wołowiny. Wykorzystywany jest również mikrokontroler jako główna jednostka gromadzenia danych i wykorzystuje metodę Mamdani Fuzzy Method jako system podejmowania decyzji w zakresie pozyskiwania danych z czujników. Ogólny wynik testu w systemie ma 86,67% prawdopodobieństwa powodzenia przy poziomie blędu 13,3% z 15 prób. (Projekt detektora świeżości wołowiny na podstawie koloru i zapachu metodą rozmytą Mamdani)

Keywords: Beef Freshness Detection Results, Mamdani Fuzzy Method, Beef Scent and Color Detection **Słowa kluczowe:** Wyniki wykrywania świeżości wołowiny, metoda rozmyta Mamdani, wykrywanie zapachu i koloru wołowiny

Introduction

Beef is an example of a basic food ingredient that is used extensively widespread. Therefore, certain quality standards are needed so that consumers do not feel disadvantaged. These standards include purity and freshness with certain standards. Process distribution from breeders to consumers has a very long procedure, which caused the price of beef sold in the market to soar. This kind of price causes unscrupulous elements to use various methods to get benefits, one of which is mixing fresh meat with not a fresh meat[1].

With that kind of fraud, ordinary consumers will suffer from the problems of meat. Presently, determining the quality of beef is carried out manually, namely by pressing the beef so that it can see the texture of the meat. This manual method has disadvantages for consumers who are not careful in choosing qualified meat. This is why a system design to utilize the characteristic of decaying meat is proposed[2].

The freshness of the meat can be detected from the smell or aroma that is released by the meat. It can also be detected by its color. The smell of fresh meat, of course, will be different from the smell of rotting meat, so will the color also change. It is less precise if the detection relies on the human sense of smell and vision. For this reason, a meat aroma detection sensor is needed and sensors that can accurately detect changes in meat color. The combination of these two sensors results in a meat freshness detection system. The main difference in the quality of local beef and imported beef lies in the aroma, taste, and smell. Local beef has aroma, taste, smell, and a distinctive red color. One of the marks of whether the beef is good is from the texture that if pressed will return to its original state. Otherwise, the meat is no longer good or damaged. Good quality beef has a special taste and aroma as well as yellowish white fat (vein). When it is processed or cooked, the meat veal will get more delicious and have the taste of tender meat[3-15.]

For that reason, a system design to detect meat freshness is proposed using two kinds of sensors, which is

Gas Sensors (MQ-136 and MQ-137) for performing meat aroma detection and Color Sensor (TCS3200) to detect the change in meat color. In addition, a microcontroller is used as the main unit for data acquisition and use the Mamdani Fuzzy Method for the system taking test samples from the data that has been acquired from the sensor[16].

MQ-136 and MQ-137 Sensor

SnO2 is a sensitive material in sensors with the MQ type. When exposed to clean air, the level of its conductivity tends to have a low rate. The conductivity value will increase when exposed to detected gas according to the gas concentration in the air. Sensor conductivity changes can be used as an output signal that has the relationship between gas and air detected by using a simple circuit.

Two MQ-type sensors have similar principles and characteristics. The difference lies in the results of the gas types detection. The MQ-136 sensor is used specifically to detect the concentration of H2S gas in the air, whereas the MQ-137 sensor is used specifically to detect the presence of NH3 gas in the air

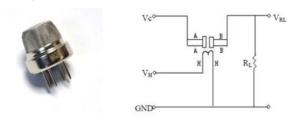


Fig 1. MQ Sensor Form and Schematic [2]

TCS 3200

The color sensor is used to detect the color of the meat's freshness. Light-to-frequency converter on the TCS 3200 reads the array from the photodiode with an 8x size. This photodiode has 16 green filters, 16 blue filters, 16 red filters as well as 16 colorless filters. The output frequency produced by the sensor is 2 Hz $-500\ kHz.$

Fig 2. TCS3200 Color Sensor [2]

Table 1. Beef with Fresh Condition

Red Filter	Green Filter	Blue Filter
38	19	16
38	15	16
45	20	20
17	7	6
22	10	8

Table 2. Beef with Decayed Condition Red Filter Green Filter Blue Filter 15 5 5 48 26 23 14 36 17 50 31 25 36 18 16

Mamdani Fuzzy Method

The Mamdani Fuzzy Method is useful before drawing the best formula or decision in an uncertain situation. This method utilized linguistic rules and stored fuzzy algorithms that can be analyzed mathematically so that it is easier to understand [16].

The process of decision gathering using the Fuzzy Mamdani Method to get the best statement is being done through many stages, namely the fuzzy sets preparation, implication benefit application, rules composition, and defuzzification. The advantage of the method is specifically more listening to what will be produced in every fuzzy environment, so it will result in more accurate statements. Besides, the method is compatible if the input is received from the human. The disadvantage of the method is it can only be used in the quantitative information composition, not in qualitative information.

Research Method Mechanical Design

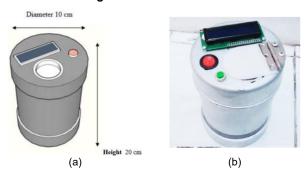


Fig 3. Beef Freshness Detector Hardware with (a) 3D design, (b) Tools Design

Figure 3 above shows the mechanical design of the Beef Freshness Detector. The Device has a dimension of 20 cm in height and 10 cm in diameter. MQ sensors are located on the side of the device and the TCS sensor is located on the bottom side of the device.

Electrical Design

Figure 4 above shows the electrical wiring of the device. The input of the system consists of MQ-137, MQ-136, TCS3200, and a button. The output of the system is a Buzzer and an LCD to display the status data. The electrical wiring is supplied by the 9V DC Battery.

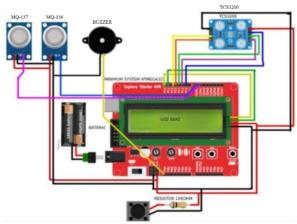


Fig 4. Beef Freshness Detector Electrical Wiring

Software Design

Fig 5. The Detector's Fuzzy System Flowchart

Figure 5 above shows the flowchart of the Detector's Fuzzy System Flowchart. When the button is pushed, the main controller will gather data from the sensor's sensing and then process it to the Fuzzy Input. From then, the defuzzification applied to classify the beef and the status of the beef will be displayed at the buzzer three times and text on LCD. The Fuzzifications membership of the sensors is using ppm data as Table 3 below to determine the quality of beef through data processing.

Table 3. The System's Fuzzy Membership

Sensor	Low (ppm)	High (ppm)
MQ-136	19,397	34,414
MQ-137	9,144	21,154
TCS3200	42	74

MQ-136 Membership Function

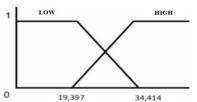


Fig 6. MQ-136 Fuzzy Membership Function

$$\mu \ low[x] = \begin{cases} 1 & x \ge 34,141 \\ \frac{34,141 - x}{15,017} & 19,397 \le x \le 34,141 \\ 0 & x \le 19,397 \end{cases}$$

$$\mu \ high[x] = \begin{cases} 1 & x \le 19,397 \\ \frac{x - 19,397}{15,017} & 19,397 \le x \le 34,141 \\ 0 & x \ge 34,141 \end{cases}$$

MQ-137 Membership Function

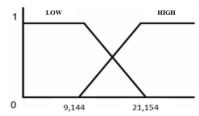


Fig 7. MQ-137 Fuzzy Membership Function

$$\mu \log[x] = \begin{cases} \frac{1}{21,154 - x} & x \le 21,154 \\ \frac{21,154 - x}{12,01} & 9,144 \le x \le 21,154 \\ 0 & x \ge 9,144 \end{cases}$$

$$\mu \operatorname{high}[x] = \begin{cases} \frac{1}{x - 9,144} & x \le 21,154 \\ \frac{x - 9,144}{12,01} & 9,144 \le x \le 21,154 \\ 0 & x \ge 21,154 \end{cases}$$

TCS3200 Membership Function

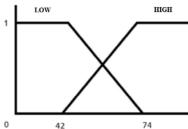


Fig 8. TCS3200 Fuzzy Membership Function

$$\mu \log[x] = \begin{cases} \frac{1}{74 - x} & x \le 74\\ \frac{74 - x}{32} & 42 \le x \le 74\\ 0 & x \ge 74 \end{cases}$$
$$\mu high[x] = \begin{cases} \frac{1}{x - 42} & x \le 42\\ \frac{32}{32} & 42 \le x \le 74\\ 0 & x \ge 42 \end{cases}$$

Fuzzy Rule Base

Table 4. System's Fuzzy Rule Base

MQ-136	MQ-137	TCS3200	Beef Condition
Low	Low	Low	Fresh
Low	Low	High	Fresh
Low	High	Low	Bad
Low	High	High	Medium
High	Low	Low	Bad
High	Low	High	Medium
High	High	Low	Bad
High	High	High	Bad

Defuzzification

The system selected three outputs to determine the condition of beef freshness represented in the following membership function. The Defuzzification method applied is the Mean Of Maximum (MOM) method. The method solves the crisp by gathering the crisp which has the largest

membership degree from the domain of maximum membership value. Figure 9 below shows the Membership Function curve for the system's defuzzification.

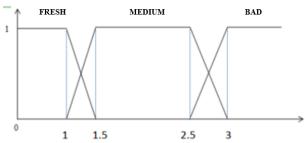
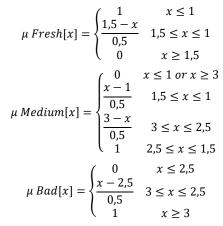



Fig 9. System's Defuzzification Membership Function

Result and Discussions MQ-136 Test Result

The sensor test is applied to determine the sulfide (H2S), the main factor of meat decaying by aerobic bacteria on meat causing mucus production, changes in meat color, fat, phosphorescent, and odor. To determine the meat quality is to get the fresh one and then let it stand for 6 hours to change into medium and another 6 hours to change into bad result. Table 5 below shows the classification of the Sulfide (H2S).

Table 5. Sulfide (H2S) Parameter of Classification

Output Range (ppm)	Classification
0 – 25	Fresh
25 – 35	Medium
35 – 45	Bad

Table 6. MQ-136 Test Result of The Beef Quality in ppm Fresh Medium Bad No Beef 23,631 34,414 43,115 0,156 18,627 35 042 35,216 0.303 19,553 32,616 34,414 0,156 18,028 34,151 32,634 17,880 0.156 33.374 30 917 0.230 21.176 31.876 33.631 20,030 31,634 32,368 0,156 18,627 29,531 35,216 0,080 32,867 0,156 18 325 32.121 18,627 33,119 33,119 0.156

Table 6 above shows the reading result of the MQ-136 test on the beef quality of 10 passing through the sensor in 10 trials. From the data, it is calculated the average value of each quality of beef. The fresh quality has an average value of 19,4504, the medium quality has an average value of 32,665, the bad quality has an average value of 34,672 and 0,1549 for no beef situation.

MQ-137 Test Result

The sensor test is applied to determine the ammonia (NH3) level of organic matter pollution in the meat. Table 7

and Table 8 below show the Ammonia parameter and MQ-137 test result of the beef.

Table 7. Ammonia (NH3) Parameter of Classification

Table 7. Ammonia (NH3) Parameter of Classification				
Output Range (ppm)	Classification			
0 – 10	Fresh			
11 – 19	Medium			
20 – 25	Bad			

Table 8. MQ-137 Test Result of The Beef Quality in ppm						
Fresh	Medium	Bad	No Beef			
9,513	12,666	20,319	0,069			
9,291	11,465	21,154	0,134			
9,513	12,569	22,032	0,069			
9,144	11,913	20,648	0			
9,144	11,117	22,032	0,069			
8,787	12,190	21,853	0,102			
9,072	12,474	21,474	0,069			
9,072	12,763	21,675	0,035			
9,291	12,666	20,648	0,069			
9 217	12 284	21 326	0.069			

Table 8 above shows the reading result of the MQ-137 test on the beef quality of 10 passing through the sensor in 10 trials. From the data, it is calculated the average value of each quality of beef. The fresh quality has an average value of 9,2044, the medium quality has an average value of 12,2107, the bad quality has an average value of 20,4161, and 0,0685 for no beef situation.

TCS3200 Test Result

The sensor is utilized to detect the color change of the beef. The test is being done by taking data starting from the no meat test, then with the fresh quality, medium, and lastly bad quality meat. The output parameter of this sensor is RGB color categories known as Red, Green, and Blue. Table 9 below shows the data for each quality of the meat.

Table 9. TCS3200 Test Result of The Beef Quality

R G B R G B R G B R G B 77 33 28 52 24 21 33 19 17 255 253 255 68 22 19 50 27 24 47 29 27 252 254 255 74 28 23 54 20 17 44 27 25 251 253 255 71 25 21 58 28 25 44 26 24 255 253 255
68 22 19 50 27 24 47 29 27 252 254 255 74 28 23 54 20 17 44 27 25 251 253 255 71 25 21 58 28 25 44 26 24 255 253 255
74 28 23 54 20 17 44 27 25 251 253 255 71 25 21 58 28 25 44 26 24 255 253 255
71 25 21 58 28 25 44 26 24 255 253 255
83 35 30 48 25 23 43 26 24 253 255 255
71 26 22 51 24 22 35 21 17 255 255 254
82 34 31 53 28 25 46 29 28 255 254 255
76 31 26 56 21 18 45 27 26 255 255 255
77 32 28 58 27 22 46 27 25 254 253 255
70 24 22 49 26 24 42 26 25 253 255 254

Mamdani Fuzzy Test Result

To test the Fuzzy system, each data from the sensors will be applied as an input reference. The fuzzy system will determine the decision for the output value based on sensor data references. Table 10 below shows the test result on each quality of the beef.

Table 10. Mamdani Fuzzy Test Result

MQ-136	MQ-137	TCS3200	Fuzzy	State
23,631	9,513	77	1,128	Fresh
18,627	9,291	68	1,094	Fresh
19,553	9,513	74	1,015	Fresh
18,028	9,144	71	1,047	Fresh
17,880	9,144	83	1,000	Fresh
34,414	12,666	59	2,633	Medium
38,042	11,465	61	2,648	Medium
32,616	12,569	64	2,672	Medium
31,634	11,913	60	2,641	Medium
30,917	11,117	63	2,664	Medium
43,115	20,319	33	2,965	Bad
35,216	21,154	47	2,922	Bad
34,414	22,032	44	2,969	Bad
34,151	20,648	44	2,969	Bad
33,374	22,032	43	2,964	Bad

Overall System Test Result

Table 11. Overall System's Test Result

Beef Quality	MQ-136	MQ-137	TCS3200	Fuzzy	Device Result	Status
Fresh	18,434	9,276	72	1,031	Fresh	Match
Fresh	24,654	9,103	69	1,163	Fresh	Match
Bad	33,245	15,748	40	2,775	Bad	Match
Fresh	26,360	9,224	63	1,222	Fresh	Match
Medium	30,762	11,560	59	2,633	Medium	Match
Medium	34,849	11,956	67	2,691	Medium	Match
Bad	32,674	14,672	48	2,770	Bad	Match
Fresh	19,235	10,344	66	1,125	Fresh	Match
Fresh	23,541	9,582	75	1,124	Fresh	Match
Medium	28,176	12,152	73	2,642	Medium	Match
Bad	40,679	20,763	38	2.984	Bad	Match
Bad	35,602	18,421	39	2.886	Bad	Match
Medium	28,194	11,982	58	2,750	Bad	Not Match
Bad	37,512	21,852	31	3.000	Bad	Match
Medium	34,313	12,666	58	2,750	Bad	Not Match

Table 11 above shows the overall system test result. From the data, the system has a success rate of 86,67% with 13,3% error from 15 trials since there are 2 of the beef that does not match in the system's detection. This is caused by a voltage drop in the device which causes instability in data acquisition.

Conclusions

From the overall test, MQ-136 and MQ-137 can be applied to determine the freshness degree of the beef. The MQ-136 test result on beef qualities shows an average value of 19,4504 on fresh quality, 32,665 on medium, and 34,6725 on bad quality. The MQ-137 test result on beef qualities shows an average value of 9,2044 on fresh quality, 12,2107 on medium, and 20,4161 on bad quality. The

designed system has a success rate of 86,67% with an error degree of 13,3%, with 2 mismatches from 15 trials.

Author. Dr. Ir. Hari Agus Sujono, M.SC., Department of Electrical Engineering, Institut Teknologi Adhi Tama Surabaya, Arief Rahman Hakim 100 Surabaya 60117, E-mail: hari.agus17@itats.ac.id

Achmad Saiful Faris, Department of Electrical Engineering, Institut Teknologi Adhi Tama Surabaya, Arief Rahman Hakim 100 Surabaya 60117, E-mail; farizc232@gmail.com

REFERENCES

- [1] Xiaobo, Z., Jiewen, Z., Comparative analyses of apple aroma by a tin-oxide gas sensor array device and GC/MS. Food Chem. 107, pp. 120–128, 2008.
- 2] P. Guo and M. Bao, "Research and realization of hand-held mobile bacon detection based on Neural Network Pattern recognition," in 2016 Chinese Control and Decision Conference (CCDC), pp. 2018–2021, 2016.

- [3] G. Peiyuan, B. Man, Q. Shiha, and C. Tianhua, "Detection of Meat Fresh Degree Based on Neural Network," in 2007 International Conference on Mechatronics and Automation, 2007, pp. 2726–2730.
- [4] Riny Sulistyowati, A Suryowinoto, HA Sujono, I Iswahyudi, Monitoring of road damage detection systems using image processing methods and Google Map, IOP Conference Series: Materials Science and Engineering, 2021.
- [5] Pearce, T.C., Handbook of Machine Olfaction: Electronic Nose Technology, Wiley-VCH, 2003.
- [6] Safat B. Wali , Mohammad A. Hannan , Aini Hussain , Salina A. Samad, Comparative Survey on Traffic Sign Detection and Recognition: a Review, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097 R 91 NR 12/2015
- ISSN 0033-2097, R. 91 NR 12/2015.
 [7] Radi, M. Rivai, M.H. Purnomo, "Study on Electronic-Nose-Based Quality Monitoring System for Coffee under Roasting," Journal of Circuits, Systems, and Computers, Vol. 25, No. 10, 2016.
- [8] J. Lozano, J. P. Santos, J. I. Suárez, M. Cabellos, T. Arroyo, and C. Horrillo, "Automatic Sensor System for the Continuous Analysis of the Evolution of Wine," Am. J. Enol. Vitic., vol. 66, no. 2, pp. 148–155, May 2015.
- [9] T. Aguilera, J. Lozano, J. A. Paredes, F. J. Álvarez, and J. I. Suárez, "Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction," Sensors, vol. 12, no. 6, pp. 8055–8072, Jun. 2012.
- [9] Rivai, M., Purwanto, D., Juwono, H., Sujono, H.A., "Electronic nose using gas chromatography column and

- quartz crystal microbalance," TELKOMNIKA 9 (2), pp. 319-326, 2011.
- [10] Hari Agus Sujono, Muhammad Rivai, Vapor identification system using quartz resonator sensor array and support vector machine. ARPN Journal of Engineering and Applied Sciences 2014
- [11] E.Górska-Hdrczyczak, D. Guzek, Z. Mdlęda, I. Wdjtasik-Kalindwska, M. Brdddwska, A. Wierzbicka, "Applications of electronic noses in meat analysis," Food Sci. Technol. Camp., vol. 36, no. 3, pp. 389–395, Sep. 2016.
- [12] A. Amari, N. El Barbri, E. Llobet, N. El Bari, X. Correig, and B. Bouchikhi, "Monitoring the Freshness of Moroccan Sardines with a Neural-Network Based Electronic Nose," IEEE Sensors, vol. 6, 2006, pp. 1209-1223.
- [13] P. E. Keller, L. J. Kangas, L. H. Liden, S. Hashem, and R. T. Kouzes, "Electronic Noses and Their Applications," IEEE Northcon/Technical Applications Conference in Portland, OR, USA, Dec. 1995.
- [14] S. Bedoui, R. Faleh, H. Samet, and A. Kachouri, "Electronic nose system and principal component analysis technique for gases identification," in 10th International Multi-Conferences on Systems, Signals Devices 2013 (SSD13), 2013, pp. 1–6. [18] I. Morsi, "Electronic Nose System and Artificial Intelligent Techniques for Gases Identification," 2010.
- [15] S. Choopun, N. Hongsith, and E. Wongrat, "Metal-Oxide Nanowires for Gas Sensors," 2012.
- [16] RinySulistyowati, Kunto Aji, Implementation of wireless mobile sensor based on fuzzy logic control for lpg gas pipeline leakage monitoring, ARPN, 2014.