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Bi-objective robust design optimization for LED lens design 
 
 

Abstract. The primary objective of this paper is to propose bi-objective robust design optimization models for LED lens design. The viewing angle 
and the luminance uniformity are used as the two optical quality objectives. Based on the experimental designs, the response surface methodology 
is applied to identify the functional relationships between input factors (i.e., design parameters) and their two output responses. Then, the dual 
response model is applied to determine the optimal solutions. In addition, the -constrained method is developed to identify the optimal design 
parameter settings. Moreover, the weighted sum model based on the quality loss function is proposed to consider the trade-off between two 
conflicting objectives. The final results show that the proposed models are far more effective than the existing method in LED lens design. 
 
Streszczenie. Głównym celem tego artykułu jest zaproponowanie dwóch dwuobiektywnych, solidnych modeli optymalizacji konstrukcji dla 
konstrukcji soczewek LED. Kąt widzenia i jednorodność luminancji są używane jako dwa optyczne cele jakości. W oparciu o projekty 
eksperymentalne zastosowano metodologię powierzchni odpowiedzi w celu zidentyfikowania funkcjonalnych zależności między czynnikami 
wejściowymi (tj. parametrami projektowymi) a ich dwiema odpowiedziami wyjściowymi. Następnie opracowywany jest model podwójnej odpowiedzi 

w celu określenia optymalnych rozwiązań. Ponadto zaproponowano metodę z ograniczeniami  w celu identyfikacji optymalnych ustawień 
parametrów projektowych. Kompromis między dwoma sprzecznymi celami może być zagrożony przy użyciu proponowanych modeli. Ostateczne 
wyniki pokazują, że proponowane modele są znacznie bardziej efektywne niż dotychczas stosowane metody projektowania soczewek LED. 
(Dwuobiektywowa, solidna optymalizacja konstrukcji soczewki LED) 
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Introduction 
The light emitting diode (LED) has been widely used in 

lighting systems due to its advantages of long lifetime, low 
energy consumption, and being environmentally friendly. 
Therefore, LEDs are now becoming alternative generation 
light sources. However, the light distribution of LED chips, 
which is considered Lambertian with the radiance property, 
is quite different from traditional light sources, such as 
incandescent, halogen, and fluorescent lamps [1]. LEDs 
release energy in the form of light based on the combination 
of electrons and holes. The distribution of light on the target 
surface may be discontinuous in practical applications. In 
addition, several contours of light may arise on the target 
surface. The angular extent of light emitted by an 
unmodified LED is near  600. The highest luminous 
intensity of a LED source is concentrated at 900 to the 
epitaxial axis [2]. For different practical applications of LEDs 
in lighting, the two characteristics of unmodified LEDS 
consisting of light distribution and efficiency may not 
guarantee the specific requirements. To solve the problems, 
the secondary lenses of LEDs need to be designed to 
change achieve the proper light distribution with higher 
efficiency.  

In the literature, several works have proposed several 
methods to identify the optical design process of LED 
lenses. A freeform LED lens design for the illumination of 
uniformity near 90% using numerical computations is 
proposed [3]. Both numerical simulations based on the 
Monte Carlo ray tracing method and experiments are used 
to design a compact freeform lens for application-specific 
light-emitting diode packaging [4]. For LED street lighting, a 
new energy mapping method is provided for the optimal 
design of a freeform lens to generate uniform illumination of 
over 95% on the target plane [5]. An efficient and practical 
design method for a LED-based reflector-array lighting 
module for specific illuminance distribution is proposed [6]. 
Authors in [7] develop the simultaneous multiple surface 
design method of diffractive optical surfaces besides 
refractive and reflective ones. A facile automotive headlamp 
optical configuration is proposed to solve the problem of 
high cost and low optical efficiency of current LED-based 
headlamps [8]. A uniform illumination design by 
configuration of LEDs and optimization of LED lens is 

presented for large-scale color-mixing applications [9]. 
Another research direction is to use statistical and 
optimization methods to design optical lenses for time-
saving in the manufacturing process. The functional-link-
based neuro-fuzzy network with immune particle swarm 
optimization is used to compensate for the backlight images 
[10]. A search method using a neural network algorithm and 
computer simulation is proposed to improve the surface 
profile of injection molding optic lens [11]. A hybrid dynamic 
pre-emptive and competitive neural-network approach is 
proposed to solve the multi-objective dispatching problem 
for TFT-LCD manufacturing [12]. Spectral power distribution 
is estimated using neural network models [13]. The lens 
array for LED backlight in the LCD imaging engine of the 
helmet-mounted display is designed and optimized [14]. 
The simulated annealing algorithm is used to design an 
LED array for achieving a good uniform illumination 
distribution on the target plane [15]. An irradiance array 
scheme is proposed to achieve the optimization design of 
an irradiance array for LED uniform rectangular illumination 
[16]. LED color is predicted using a boosting neural network 
model for a visual-MIMO system [17]. The neural network is 
developed to estimate the performance of an optical system 
based on the errors of its individual components [18]. 

In recent years, the optical design process using optical 
analysis software packages can save time, costs, and 
manpower. Based on these software packages, several 
design strategies can be implemented to obtain the desired 
parameters of LED lens shapes. In the early stage, the trial-
and-error method is usually used to build the leans 
dimensions and parameters. However, this method may be 
time-consuming to identify the optimal lens. To solve this 
optimization issue of LED lens design, the Taguchi method 
is used in several works. The Taguchi orthogonal array, 
signal-to-noise (SN) ratio, and principal component analysis 
are used to optimize the multiple quality characteristics of 
an LED pocket-sized projection display [19]. A combination 
of Taguchi methods, principal component analysis (PCA), 
and fuzzy theory is integrated to solve the multiple quality 
characteristics in optimization experiments of a miniature 
optical engine with high light efficiency and uniformity [20]. 
The Taguchi L25 orthogonal array, back-propagation neural 
network, and genetic algorithm are used to determine the 
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optimum design for LED lens design with 1350 viewing 
angle and 93.35% uniformity [21]. The Taguchi L25 
orthogonal array, back-propagation neural network, genetic 
algorithm, and particle swarm are combined to provide a 
procedure for optimization of optical design for developing 
an LED lens module [22]. The Taguchi method and PCA 
are combined in an optical lens design for LED lighting with 
over 92% light efficiency and an improvement in uniformity 
[2]. The Taguchi method determines the optimal values of 
optical uniformity factors of the backlight module [23]. The 
Taguchi philosophy consists of two basic steps: the 
experimental designs (or, the design of experiments) and 
the SN ratio. Although this philosophy is widely recognized 
in quality engineering, the Taguchi two-step method has 
caused several controversy and debate [24]–[27]. 
Therefore, the Taguchi and response surface philosophies 
are combined to establish the dual response approach 
where the process mean and variance are separately 
estimated as functions of control factors [28]. Based on that 
milestone, the robust design (RD) methodology is 
generated with three sequential steps, i.e., the experimental 
design or design of experiments (DoE), estimation, and 
optimization. The primary goal of the DoE step is to exploit 
the information about the relationship between the input 
factors and output responses. The main purpose of the 
estimation step is to estimate the functional relationship 
between these variables. Finally, the optimal settings of the 
input factors are determined in the last one. 

In the LED lens design optimization issue, the viewing 
angle and the luminance uniformity are considered two 
quality characteristics. Each quality characteristic is 
examined as a single response approach in the RD 
viewpoint. The optimal values of six factors including lens 
bottom width, lens height, diameter of diffusion mechanism, 
radius of lens negative camber, radius of lens positive 
camber, and radius of curved surface of diffusion 
mechanism are identified to satisfy the optimization targets: 
(1) maximize the viewing angle and (2) maximize luminance 
uniformity. Therefore, the primary purpose of this paper is to 
solve the bi-objective robust design optimization models for 
LED lens design. The response surface methodology 
(RSM) is used to estimate the functional relationships 
between the viewing angle and the luminance uniformity 
and their six input factors. The simultaneous maximization 
of the viewing angle and luminance uniformity may cause 
conflict. Therefore, the dual response model is applied to 
solve this issue. The - constrained method is developed to 
identify the LED lens design. Furthermore, the weighted 
sum model based on the quality loss function is established 
to consider the trade-off between the viewing angle and the 
luminance uniformity. 

The remainder of this paper is organized as follows. In 
Section 2, the proposed RD optimization models are 
presented. In Section 3, the case study of LED lens design 
in lighting is conducted. The conclusions are given in 
Section 4. 
 
Bi-objective robust design optimization models 
Response surface methodology 

In statistics, RSM is usually utilized to analyze and 
estimate the functional relationship between input factors 
and their corresponding output responses. The coefficients 
in the input-output functional relationship are usually 
estimated using the conventional least squares method, as 
introduced by Box and Wilson [29]. The various 
development status and future directions of RSM are 
discussed in [30]. In the matrix form, the output response y 
can be established as a function of input factors x as: 
(1)   y xβ ε   

where  is a column vector of the coefficients and vector  
is the random error. The estimated function model is 
represented as follows: 

(2)   y βx   

where the coefficients are estimated using the least squares 
method as 

(3)   1( )T Tβ X X X y .  
 

Dual response model 
The dual response model proposed by Vining and 

Myers is used to consider the trade-off between process 
mean and variance. In this paper, the viewing angle and the 
luminance uniformity are two objectives of optimization. The 
primary goal of LED lens design is to maximize the viewing 
angle and the luminance uniformity simultaneously. 
Therefore, the dual response optimization model in this 
paper can be modified and represented as follows: 

(4)  



1

22

max   ( )

subject to ( )

y

y 

x

x
  

where 2 is the target value of the estimated function of the 

luminance uniformity (i.e., 2 ( )y x ).  
 

-constrained method 
For multi-objective optimization issues, the main 

purpose of this optimization model is to transform one of the 
objectives into a constraint. The absolute deviation of one 
objective and its corresponding target must be less than a 
small predefined bias to relax the solutions. In this paper, 
the bi-objective optimization model based on the -
constrained method for two objectives can be represented 
as follows: 

(5)  
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(6)   
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where 1, 1, and 2 are the target and upper bounds on the 
absolute deviation of the viewing angle and the luminance 
uniformity from their desirable target values, respectively. 
  

Weighted sum model 
The weighted sum model is probably the most popular 

method used to solve bi-objective optimization. By 
assigning different values of weights of two objectives, a 
better compromise between the viewing angle and the 
luminance uniformity can be obtained. The weighted sum 
model using the quality loss function in this case study can 
be shown as: 

(7) 
   

2 2
1 21 2max ( ) 1 ( )

subject to 0 1

y y   



         
 

x x
 

where  is the weight.  
  

Case study 
A case study given by Chen et al. [21] is utilized to 

demonstrate the applicability of the above RD optimization 
models in identifying the optimum of LED lens design. The 
six design parameters are lens bottom width (A), lens height 
(B), diameter of diffusion mechanism (C), radius of lens 
negative camber (D), radius of lens positive camber (E), 
and radius of curved surface of diffusion mechanism (F). In 
the first stage, the setting range values of these six factors 
are divided into five levels. An L25 (5

6) orthogonal array is 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 100 NR 4/2024                                                                               57 

conducted where ”5” denotes the levels of each factor and 
”6” denotes the number of factors. According to the results 
of the first stage, the radius of lens positive camber (E) is 
determined to be fixed at 3.0 mm for a wide viewing angle 
design. The setting range values of the five factors are 
adjusted to achieve better parameters. Therefore, the 
second L25 (5

5) orthogonal array for five control factors with 
five levels is conducted. No. 26 to No. 30 are the 
combination for tests derived from random numbers within 
Taguchi experimental parameters. Consequently, an L30 
orthogonal array is executed and represented in Table 1. In 
their work, the genetic algorithm (GA) is used to solve the 
optimization issues. Then, the optimal solutions are 
compared to the Taguchi two-step method.  

 

Table 1. Second experimental data table for case study 
Input factors [mm] Output responses 

A (x1) B (x2) C (x3) D (x4) F (x5) Viewing 
angle 
[0] (y1) 

Luminance 
uniformity 

[%] (y2) 
0.650 4.900 3.800 2.500 2.350 129.00 88.95 
0.650 4.950 3.850 2.525 2.375 131.00 89.62 
0.650 5.000 3.900 2.550 2.400 130.00 90.15 
0.650 5.050 3.950 2.575 2.425 130.00 90.62 
0.650 5.100 4.000 2.600 2.450 132.00 90.29 
0.675 4.900 3.850 2.550 2.450 131.00 87.97 
0.675 4.950 3.900 2.575 2.350 129.00 91.63 
0.675 5.000 3.950 2.600 2.375 129.00 92.32 
0.675 5.050 4.000 2.500 2.400 130.00 91.71 
0.675 5.100 3.800 2.525 2.425 128.00 88.54 
0.700 4.900 3.900 2.600 2.425 134.00 88.92 
0.700 4.950 3.950 2.500 2.450 132.00 88.89 
0.700 5.000 4.000 2.525 2.350 133.00 88.87 
0.700 5.050 3.800 2.550 2.375 130.00 90.67 
0.700 5.100 3.850 2.575 2.400 130.00 91.00 
0.725 4.900 3.950 2.525 2.400 129.00 89.79 
0.725 4.950 4.000 2.550 2.425 131.00 89.76 
0.725 5.000 3.800 2.575 2.450 134.00 87.76 
0.725 5.050 3.850 2.600 2.350 128.00 91.94 
0.725 5.100 3.900 2.500 2.375 130.00 92.03 
0.750 4.900 4.000 2.575 2.375 131.00 89.85 
0.750 4.950 3.800 2.600 2.400 130.00 90.09 
0.750 5.000 3.850 2.500 2.425 130.00 89.43 
0.750 5.050 3.900 2.525 2.450 133.00 89.46 
0.750 5.100 3.950 2.550 2.350 134.00 88.08 
0.710 5.070 3.830 2.535 2.360 129.00 90.76 
0.750 5.010 3.860 2.540 2.370 128.00 89.88 
0.690 4.990 3.890 2.545 2.380 129.00 89.89 
0.680 4.970 3.920 2.560 2.390 130.00 89.06 
0.740 4.930 3.940 2.570 2.410 129.00 88.67 
 

By using RSM, the estimated functions of viewing angle 
and luminance uniformity are represented as follows:   

(8)  


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.  

The corresponding analysis of variance (ANOVA) tables 
of the two estimated functions are shown in Tables 2 and 3, 
respectively. The main and interaction effects plots of five 

input factors on the two output responses are shown in 
Figures 1 and 2, respectively. 
 
Table 2. ANOVA table for the estimated function of the viewing 
angle 

Source DF Adj SS Adj MS F-value P-value 
Regression 20 70.5569 3.52784 1.53 0.262 

x1 1 3.5291 3.52914 1.53 0.248 
x2 1 0.9731 0.97310 0.42 0.533 
x3 1 0.9285 0.92851 0.40 0.542 
x4 1 0.8759 0.87588 0.38 0.553 
x5 1 4.8719 4.87192 2.11 0.181 

x1*x1 1 2.4546 2.45457 1.06 0.330 
x2*x2 1 0.2780 0.27802 0.12 0.737 
x3*x3 1 1.2931 1.29308 0.56 0.474 
x4*x4 1 1.5801 1.58010 0.68 0.430 
x5*x5 1 2.9003 2.90034 1.25 0.292 
x1*x2 1 1.0783 1.07829 0.47 0.512 
x1*x3 1 0.4098 0.40980 0.18 0.684 
x1*x4 1 0.8503 0.85034 0.37 0.559 
x1*x5 1 0.0125 0.01247 0.01 0.943 
x2*x3 1 0.5023 0.50226 0.22 0.652 
x2*x4 1 0.1668 0.16679 0.07 0.794 
x2*x5 1 0.1120 0.11203 0.05 0.831 
x3*x4 1 2.1690 2.16902 0.94 0.358 
x3*x5 1 0.9600 0.96000 0.42 0.535 
x4*x5 1 9.2538 9.25381 4.00 0.076 
Error 9 20.8098 2.31220 R-sq  
Total 29 91.3667  77.22%  
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Fig.1. Main (a) and interaction (b) effects plot for viewing angle 
Table 3. ANOVA table for the estimated function of the luminance 
uniformity 

Source DF Adj SS Adj MS F-value P-value 
Regression 20 70.5569 3.52784 1.53 0.262 

x1 1 3.5291 3.52914 1.53 0.248 
x2 1 0.9731 0.97310 0.42 0.533 
x3 1 0.9285 0.92851 0.40 0.542 
x4 1 0.8759 0.87588 0.38 0.553 
x5 1 4.8719 4.87192 2.11 0.181 

x1*x1 1 2.4546 2.45457 1.06 0.330 
x2*x2 1 0.2780 0.27802 0.12 0.737 
x3*x3 1 1.2931 1.29308 0.56 0.474 
x4*x4 1 1.5801 1.58010 0.68 0.430 
x5*x5 1 2.9003 2.90034 1.25 0.292 
x1*x2 1 1.0783 1.07829 0.47 0.512 
x1*x3 1 0.4098 0.40980 0.18 0.684 
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x1*x4 1 0.8503 0.85034 0.37 0.559 
x1*x5 1 0.0125 0.01247 0.01 0.943 
x2*x3 1 0.5023 0.50226 0.22 0.652 
x2*x4 1 0.1668 0.16679 0.07 0.794 
x2*x5 1 0.1120 0.11203 0.05 0.831 
x3*x4 1 2.1690 2.16902 0.94 0.358 
x3*x5 1 0.9600 0.96000 0.42 0.535 
x4*x5 1 9.2538 9.25381 4.00 0.076 
Error 9 20.8098 2.31220 R-sq  
Total 29 91.3667  77.22%  
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Fig.2. Main (a) and interaction (b) effects plot for luminance 
uniformity  

 

Table 4. Comparisons of the optimal parameter combinations for 
the optical quality 

Method 
Input factors [mm] 

A B C D F 
Taguchi 
method 

0.700 4.900 3.900 2.600 2.425 

Taguchi 
method 

0.675 5.000 3.950 2.600 2.375 

GA by Chen 
et al. 

0.688 5.024 3.924 2.588 2.386 

Dual 
response 

model  
0.650 4.900 3.800 2.600 2.4432 

-
constrained 

method 
(Equation 5) 

0.650 4.900 3.800 2.600 2.4495 

-
constrained 

method 
(Equation 6) 

0.650 4.900 3.800 2.600 2.4444 

Weighted 
sum model 

0.650 4.900 3.800 2.600 2.4500 

 

To consider the trade-off between two output responses, 
the estimated functions of viewing angle and luminance 
uniformity in Equations (8) and (9) are combined into the 
different RD optimization models. The goal of the 
optimization issue is modified by using a predefined target 
for each objective function. The target values of the viewing 
angle and luminance uniformity are specified 138 (0) and 96 
(%), respectively, for all RD optimization models. The upper 
bounds of 1 and 2 in the -constrained method are set at 
1.3 and 0.1, respectively. For the weighted sum model, a 

better compromise between the viewing angle and 
luminance uniformity can be obtained with the weight  = 
0.4. The comparisons of the optimal parameter 
combinations for the optical quality and the optimal values 
of the viewing angle and luminance uniformity in this paper 
are shown in Tables 4 and 5, respectively. 

 

Table 5. Comparisons of the optimal values of the viewing angle 
and luminance uniformity 

Method 
Output responses 

Viewing angle 
[0] 

Luminance 
uniformity [%] 

Taguchi method 134 88.92 
Taguchi method 129 92.32 

GA by Chen et al. 134.67 92.95 
Dual response model  135.853279 95.99999 
-constrained method 

(Equation 5) 
136.700162 95.45025 

-constrained method 
(Equation 6) 

136.00605 95.89999 

Weighted sum model 136.76750 95.40700 
 

As shown in Table 5, the Taguchi method can provide 
relatively high viewing angle and luminance uniformity of 
LED lens. The genetic algorithm (GA) proposed by Chen et 
al. can provide a better compromise between viewing angle 
(134.670) and luminance uniformity (92.95%) compared to 
the Taguchi method. Furthermore, the proposed RD 
optimization models including the dual response model, the 
two -constrained methods, and the weighted sum model 
can provide better optimal solutions compared to the GA 
method proposed by Chen et al. In comparison, the 
proposed dual response model, the -constrained method 
(Equation 5), the -constrained method (Equation 6), and 
weighted sum model can improve the viewing angle by 
0.8787%, 1.5075%, 0.9921%, and 1.5575%, respectively. 
Similarly, the proposed dual response model, the -
constrained method (Equation 5), the -constrained method 
(Equation 6), and the weighted sum model can improve the 
luminance uniformity by 3.2813%, 2.6899%, 3.1737%, and 
2.6434%, respectively. 

 

Conclusions 
In this paper, the RD methodology consisting of three 

sequential steps, i.e., experimental design, estimation, and 
optimization, is proposed to determine the optimal values of 
lens size parameters in LED lens design. Based on the 
experimental design data, RSM is used to estimate the 
functional relationship between input factors and their 
corresponding output responses (i.e., the viewing angle and 
luminance uniformity). Furthermore, several bi-objective RD 
optimization models are proposed to consider the trade-off 
between the viewing angle and luminance uniformity of LED 
lens. The final results show that the proposed RD 
optimization models can provide better optimal solutions 
than the existing methods. Therefore, the efficiency of the 
proposed optimization models can be verified.  
For further study, the multi-objective RD optimization 
models based on the goal programming methods will be 
investigated to solve the multiple quality characteristics 
issue.  
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