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Comparison of the Performance of PID and TVLQR Controllers  
for Nonlinear Modelling of a Freedom Flying Body 

 

 
Abstract. The aim of the research was to enhance the trajectory control of a nonlinear freedom flying body model by comparing time-varying linear 
quadratic regulator (TVLQR) controller with proportional–integral–derivative (PID) control. The nonlinear behavior of the flying body is represented 
using a linear time-varying (LTV) approach, accounting for parameter variations over time. The equations of motion for the LTV model and the 
nonlinear flying body were elaborated within the Matlab-Simulink environment. The optimization method was utilized to adapt the PID gains for the 
simulation of the nonlinear flying body. Their response was then compared to that of identical PID gains implemented on the LTV model. TVLQR 
optimal controller was generated by solving the Riccati Equation. A comparison between the performance of TVLQR and PID controllers was 
conducted using a nonlinear flying body. Additionally, the study examined the impact of wind by introducing wind velocity to the velocity of the flying 
body. In conclusion, we found that the TVLQR controller had better tracking performance, it excelled in actuator deflection, was wind resistant, and 
effectively dealt with dynamics and actuator uncertainties. 
 
Streszczenie. Celem badań było usprawnienie kontroli trajektorii nieliniowego modelu swobodnie latającego obiektu poprzez porównanie regulatora 
zmiennoprzecinkowego liniowego regulatora kwadratowego (TVLQR) ze sterowaniem proporcjonalno-całkująco-różniczkującym (PID). Nieliniowe 
zachowanie latającego obiektu przedstawiono za pomocą modelu liniowego zależnego od czasu (LTV), uwzględniającego zmiany parametrów w 
czasie. Równania ruchu modelu LTV oraz nieliniowego obiektu latającego opracowano w środowisku Matlab-Simulink. Zastosowano metodę 
optymalizacji w celu dostosowania wzmocnień PID do symulacji nieliniowego obiektu latającego. Ich odpowiedź została następnie porównana z 
identycznymi wzmocnieniami PID zastosowanymi w modelu LTV. Optymalny kontroler TVLQR został wygenerowany poprzez rozwiązanie równania 
Riccatiego. Porównanie wydajności regulatorów TVLQR oraz PID przeprowadzono przy użyciu nieliniowego obiektu latającego. W pracy zbadano 
ponadto wpływ wiatru poprzez wprowadzenie prędkości wiatru do prędkości przemieszczającego się obiektu latającego. W podsumowaniu 
stwierdzono, że sterownik TVLQR miał lepszą wydajność śledzenia obiektu, wyróżniał się pod względem odchylenia siłownika, był odporny na wiatr i 
skutecznie poradził sobie z dynamiką i niepewnością siłownika. (Porównanie wydajności kontrolerów PID i TVLQR do modelowania 
nieliniowego obiektu swobodnie latającego) 
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Introduction 
The increasing complexity of factories and the 

heightened standards in complicate manufacturing have 
driven a growing demand for automated control systems. 
The utilization of the 6-degree-of-freedom (6-DOF) missile 
model is crucial for obtaining precise insights into the 
missile's trajectory. TVLQR optimal control is established by 
leveraging the linear time-varying (LTV) model, which 
obtains a time-varying state feedback gain through an 
online solution of the Riccati Equation. This TVLQR optimal 
control, derived from the LTV model, is then applied to the 
nonlinear dynamics of the missile in the pitch channel. 
Additionally, the TVLQR controller is equipped to 
accommodate pitch angle limits for actuators.  

According to MacKenzie, guiding can be defined as the 
process of steering a moving object towards a predetermined 
destination [1]. Draper provided insight by explaining that  
guidance relies on fundamental principles and encompasses 
comparable systems for guiding vehicles across a range of 
environments, not limited to our atmosphere, including 
gravitational fields and space [2]. The term "guided missile" 
identifies the most affluent and prepared entity for steering. It 
denotes an unmanned spacecraft capable of autonomously 
managing its trajectory [3]. In modern missile control 
methodologies, various guidance techniques are employed, 
such as classical control, optimal control, fuzzy logic, neural 
network control, differential geometric control strategies, and 
control principles based on differential game theory. 
Additionally, Elbes [4] and Westrum [5] provide a clear and 
comprehensive overview of the advancement in steering 
missile techniques. 

The application of constructional control, especially the 
concept of optimal control, has been a subject of extensive 
research in recent decades. However, traditional control 
algorithms rely on conventional methods, and researchers 
have recognized that implementing the linear quadratic 
regulator (LQR) faces limitations in terms of resources for 
constructional application [6, 7]. The LQR method is a widely 
recognized approach, and its principles have been extended 
to encompass the framework of nonlinear control and 
nonlinear models [8, 9]. The formula developed by Wu et al. 
[10] included the energy component of a single earthquake 
but did not ensure the optimal response to subsequent 
earthquakes. Ayman et al. [11] introduced a predictor-
corrector technique with applications aimed at constructing 
isolated systems to address the challenge of optimal control. 
Utilizing the LQR approach, this method simplifies the 
process, bypassing the need for intricate, time-consuming 
work, and yields control structures better suited for integration 
into a missile's onboard computer [12, 13]. 

The goals of this study were: (1) establish an 
advanced mathematical model for simulating the flight path 
of a free body within the pitch channel as a shared 
algorithm for designing, analysing, and enhancing the 
framework responsible for controlling via Simulink; and (2) 
evaluate the effectiveness of the proposed model, which 
incorporates a time-varying linear quadratic regulator 
(TVLQR) control technique to tackle the challenge of flying 
body attitude control, considering system characteristics 
and the specific demands of the application environment 
[14]. 
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The mathematical model of 6-DOF flying body 
The model encompasses 6-DOF equations, categorized 

into four distinct groups: dynamics (comprising gravity, 
aerodynamic, and thrust factors), kinematics, autopilot 
(which includes instruments, electronics, and actuators), 
and a prominent guidance descent model. The model's 
input includes parameters such as situational data, target 
trajectory, and target motion, while the outputs characterize 
the missile's flight behavior, including aspects like attitude 
angles, missile velocity, and so on. The fundamental 
framework for subsequent mathematical developments is 
based on velocity, body coordinates, and ground 
coordinates. The missile's centre of gravity (c. g.) serves as 
the point of origin for these coordinates. These coordinates 
define the horizontal plane within the ground coordinate 
system Xg−Zg, and the Yg axis complements the 
conventional right-handed system by extending 
perpendicularly. In body coordinates, the positive Xb axis 
corresponds to the roll-axis and aligns with the missile's 
centreline. The pitch axis is denoted by the positive Zb axis, 
which is perpendicular to the Xb axis on the horizontal 
plane. The positive Yb axis signifies the yaw axis and 
extends upward. The body axis system is co-moving and 
remains fixed with the missile. The direction of the missile's 
velocity (Vm), which corresponds to the direction in which 
the missile is traveling, is indicated by XV in the velocity 
coordinate system. A typical right-handed coordinate 
system is supplemented with the ZV axis [15, 16]. The X-Y 
plane represents the yaw plane, the Y-Z plane represents 
the pitch plane, and the X-Z plane represents the roll plane. 
During attitude angles (Ψ, Φ, Υ), the ground coordinate and 
body coordinate are interlinked. Meanwhile, during angles 
(θ, σ), the ground coordinate and velocity coordinate are 
interconnected. In the pitch plane, during the angle of attack 
(α), and in the yaw plane, during the sideslip angle (β), the 
velocity coordinate system is associated with the body 
frame. Figure 1 illustrates the angles between various 
coordinate systems. A six-DOF missile is governed by six 
kinematic equations (three for rotational motion and three 
for translational motion) as well as six dynamic equations 
(three for rotational motion and three for translational 
motion) [17]. 

 

 
Fig. 1. Angles among coordinate systems 
 

The equations for the six-DOF of the missile are derived 
as follows: 
(1) 𝐹 𝑚𝑉  

(2) 𝐹 𝑚𝑉 𝜃 

(3) 𝐹 𝑚𝑉 𝑐𝑜𝑠 𝜃  𝜎 

(4) 𝑀   𝐼 𝜔 𝐼 𝐼   𝜔  𝜔  

(5) 𝑀   𝐼 𝜔 𝐼 𝐼   𝜔  𝜔  

(6) 𝑀  𝐼 𝜔 𝐼 𝐼   𝜔  𝜔  

(7) 𝑋 𝑉 𝑐𝑜𝑠 𝜃  𝑐𝑜𝑠 𝜎  

(8) 𝑌 𝑉 𝑠𝑖𝑛 𝜃  

(9) 𝑍 𝑉 𝑐𝑜𝑠 𝜃  𝑠𝑖𝑛 𝜎  

(10) 𝛹 𝜔 𝑐𝑜𝑠 𝛶 𝜔 𝑠𝑖𝑛 𝛶 / 𝑐𝑜𝑠 𝛷  

(11) 𝛷  𝜔 𝑠𝑖𝑛 𝛶 𝜔 𝑐𝑜𝑠 𝛶  

(12) 𝛶 𝜔 𝑡𝑎𝑛 𝛷 𝜔 𝑐𝑜𝑠 𝛶 𝜔 𝑠𝑖𝑛 𝛶  

(13) 𝛼 𝛷 𝜃 

(14) 𝛽 𝛹 𝜎 

where:  𝑀  , 𝑀  , 𝑀   – moments represented in body 
coordinates [Nꞏm]; 𝐼  ,𝐼  ,𝐼   – moments of inertia in body 
coordinates [kgꞏm²];  𝜔 ,𝜔 ,𝜔  – angular velocities in body 
coordinates [rad/sec];  𝐹 , 𝐹 , 𝐹  – components of forces 
represented in velocity coordinates [N]; X – the missile's 
range [m]; Z – horizontal displacement [m]; Y – the altitude 
[m]; m – the mass [kg].  
 

The following equations calculate the moments and 
forces resulting from gravity, aerodynamics, and thrust 
acting on the missile [18, 19]: 

(15) 𝐹 𝑇 𝑐𝑜𝑠 𝛼 𝛿  𝑐𝑜𝑠 𝛽 𝛿 𝑄𝑆 𝐶
𝐶 𝛼                                         𝛽 𝑚𝑔 𝑠𝑖𝑛 𝜃  

(16)   𝐹 𝑇 𝑠𝑖𝑛 𝛼 𝛿 𝑄𝑆𝐶 𝛼 𝑚𝑔 𝑐𝑜𝑠 𝜃  

(17)   𝐹 𝑇 𝑐𝑜𝑠 𝛼 𝛿  𝑠𝑖𝑛 𝛽 𝛿 𝑄𝑆𝐶 𝛽 

(18) 𝑀  𝐷𝑄𝑆𝑚  

(19) 𝑀  𝑇 𝑐𝑜𝑠 𝛿  𝑠𝑖𝑛 𝛿 𝑋 𝐷𝑄𝑆 𝑚 𝛽

 𝑚   

(20)  𝑀  𝑇 𝑠𝑖𝑛 𝛿 𝑋 𝐷𝑄𝑆 𝑚 𝛼 𝑚   

where:  𝑚 ,  𝑚 , 𝑚 ,  𝑚 , 𝑚   – aerodynamic moment 
coefficients [dimensionless]; 𝐶 ,   𝐶 , 𝐶 ,  𝐶   – aerodynamic 
force coefficients [dimensionless]; D – the maximum cross-
section diameter [m];  S – the reference area [m²]; Q – the 
dynamic pressure[kg/m.sec2]; 𝛿  – the yaw nozzle 
deflection angle [o]; 𝛿  – the pitch nozzle deflection angle 
[o]; T – the thrust force [N]; 𝑋  – the distance between the 
nozzle and the centre of gravity (c.g) [m]; 𝑔  – the constant 
acceleration due to gravity, 9.81 [m/sec2[. 
  

The attitude control structure excludes the yaw and roll 
channels, focusing solely on the pitch channel within the X-
Y plane. The following equations represent the nonlinear 
motion dynamics in the pitch direction [20, 21]: 

(21) 𝛷 𝜔  

(22)    𝛼 𝜔 𝛼 𝑠𝑖𝑛 𝛼 𝛿 𝜔

                                             𝑐𝑜𝑠 𝜃  

(23)       𝜔   
𝛼

 
𝜔

 
𝑠𝑖𝑛 𝛿  

Figure 2 illustrates the block diagram for pitch angle 
attitude control. The pitch nonlinear equations of motion, 
ranging from equation (21) to equation (23), can be 
approximated (for small angles, where sin(x) ≈ x and cos(x) ≈ 
1) to obtain an LTV form as follows: 
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(24) 𝛷 𝜔  

(25)     𝛼 𝛼 𝜔 𝛿  

(26) 𝜔
 
𝛼

 
𝜔

 
𝛿  

 
where the characteristics vary over time, the state space 
equations are as follows: 

(27)     
𝛼

𝜔

1

  

𝛼
𝜔  𝛿

0
 

(28) 𝜔 0 1
𝛼

𝜔  

(29) 𝛷 𝜔  
 

 
 
Fig. 2. Pitch angle attitude control block diagram 
 
Methodology of nonlinear free body model 
PID controller design 

To ensure that the closed-loop system complies with 
the specified tracking constraints, PID controllers are 
designed, incorporating actuator chains. The PID 
controller’s adjustable gains consist of ki (integral gain), kp 

(proportional gain), and kd (derivative gain) [22]. The 
adjustable PID gains, along with actuator constraints, are 
achieved using the Nonlinear Control Design (NCD) blocks 
from Simulink’s design optimization toolbox in Matlab. A 
detailed explanation of Simulink design optimization can be 
found in references [23, 24]. 
 
TVLQR design  

The well-recognized concept of Linear Quadratic 
Regulation (LQR) is adapted to incorporate the framework 
of nonlinear control principles and nonlinear models. The 
TVLQR method simplifies complex and time-consuming 
calculations, leading to the development of more concise 
control algorithms suitable for integration into a missile’s 
onboard computer [12]. The state-space LTV model for the 
system is represented as follows: 
(30) 𝑥 𝑡 𝐵 𝑡 𝑢 𝑡 𝐴 𝑡 𝑥 𝑡  

The following optimal control law is satisfied by 
designing the state feedback matrix K(t): 

(31) 𝑢 𝑡 𝐾 𝑡 𝑥 𝑡   
To decrease the following cost function:  
(32)  𝐽 𝑥 𝑄𝑥 𝑢 𝑅𝑢 𝑑𝑡 
where: 𝑥 ∈ ℝ , control law 𝑢 ∈ ℝ , 𝐵 ∈ ℝ , weight 
matrixes 𝑄 ∈ ℝ , and 𝑅 ∈ ℝ  . Matrix Q is positive-
definite or semi-definite (𝑄 𝑄 0), and 𝑅 is a positive-
definite matrix (𝑅 𝑅 0 ).  
 

Equation (31) presents the linear control law. By 
identifying the undefined elements of matrix K, the cost 
function is minimized to determine the optimal control law 
𝑢 𝑡  at the initial state 𝑥 0 . The state feedback gain matrix 

is obtained by solving the optimization problem as follows  
[25]: 

(33) 𝐾 𝑡 𝑅 𝐵 𝑡 𝑃 𝑡  

where: 𝑃 𝑡  is a positive-definite matrix (𝑃 𝑡 𝑃 𝑡 0 ), 
and it is obtained through real-time solution of the Riccati 
equation, as demonstrated: 

(34)    𝐴 𝑡 𝑃 𝑡 𝑃 𝑡 𝐴 𝑡 𝑃 𝑡 𝐵 𝑡 𝑅 𝐵 𝑡 𝑃 𝑡 𝑄
0 

Through online solving of the state-space equations (27-29) 
and the Riccati equation (34), where: 

(35) 𝑃
𝑝 𝑝
𝑝 𝑝  

(36) 𝑅 𝑟 

(37) 𝑄
𝑞 0
0 𝑞  

(38) 𝐴
𝑎 𝑎
𝑎 𝑎  

(39) 𝐵
𝑏
𝑏  

The parameters 𝑞 , 𝑞 , and 𝑟   are adjustable 
parameters tuned using Simulink Design Optimization, as 
detailed in [26]. By substituting equations (35-39) into 
equations: 

(40)    
𝑎 𝑎
𝑎 𝑎

𝑝 𝑝
𝑝 𝑝

𝑝 𝑝
𝑝 𝑝

𝑎 𝑎
𝑎 𝑎

         
𝑝 𝑝
𝑝 𝑝

𝑏
𝑏

𝑏 𝑏
𝑝 𝑝
𝑝 𝑝

𝑞 0
0 𝑞 0 

(41) 𝑞 2𝑎 𝑝 2𝑎 𝑝 𝑏 𝑝 2𝑏 𝑏 𝑝 𝑝

                                           𝑏 𝑝 0 

(42) 𝑞 2𝑎 𝑝 2𝑎 𝑝 𝑏 𝑝 2𝑏 𝑏 𝑝 𝑝

                                          𝑏 𝑝 0 

(43) 𝑎 𝑝 𝑎 𝑝 𝑎 𝑝 𝑎 𝑝 𝑏 𝑝 𝑝

                      𝑏 𝑏 𝑝 𝑏 𝑏 𝑝 𝑝 𝑏 𝑝 𝑝 0 

Solving equations (41-43) yields the following equations: 

(44)
 𝑝

 𝑎 𝑟 𝑏 𝑏 𝑝

                   𝑟 𝑎 𝑟 𝑏 𝑞 2𝑎 𝑝 𝑏 2𝑎 𝑝 𝑏 𝑏  

(45)
 𝑝

𝑎 𝑟 𝑏 𝑏 𝑝

                  𝑟 𝑎 𝑟 𝑏 𝑞 2𝑎 𝑝 𝑏 2𝑎 𝑝 𝑏 𝑏  

(46)        𝑝 𝑎 𝑎 𝑟 𝑏 𝑝 𝑏 𝑝 √𝑥  

The solution to the Riccati equation (34) at each time step is 
presented in equations (44) to (46). Equation (33) 
calculates the state feedback gain as follows: 

(47)

 𝐾 𝑘 𝑘 𝑏 𝑏
𝑝 𝑝
𝑝 𝑝

                           𝑏 𝑝 𝑏 𝑝 𝑏 𝑝 𝑏 𝑝  

(48) 𝑘 𝑏 𝑝 𝑏 𝑝  

(49) 𝑘 𝑏 𝑝 𝑏 𝑝  
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Equation (31) is used to compute the optimal control law. 

(50) 𝛿 𝑘 𝑘
𝛼

𝜔  𝑘 𝛼 𝑘 𝜔  

The closed-loop state feedback gain is given by: 

(51) 
𝛼

𝜔 𝐴
𝛼

𝜔  

(52) 𝐴 𝐴 𝐵𝐾
𝑎 𝑏 𝑘 𝑎 𝑏 𝑘
𝑎 𝑏 𝑘 𝑎 𝑏 𝑘  

TVLQR optimal controller was implemented to obtain a 
time-varying state feedback gain through the online solution 
of the Riccati equation (34). The results obtained from the 
nonlinear flight body model with TVLQR control will be 
compared with those from the nonlinear flight body model 
utilizing classical PID control [27, 28]. 
 

Model description  
The missile's solid propellant thrust can be divided into 

two phases: 
1. Boost phase: During the initial 0 to 5.8 seconds, the 

thrust force reaches its maximum level. 
2. Sustain phase: Between 5.8 and 25 seconds, the thrust 

force decreases to its minimum value. 

It is important to note that the pitch actuator deflection 
(δ ) is limited to a range of ±22.9° (±0.4 rad). The thrust 
force curve is depicted in Figure 3. 
 

 
 
Fig. 3. Thrust force curve 
 

The linear time-varying model (LTV), with varying 
parameters (A, B) over time, is formulated by approximating 
the nonlinear model within the pitch channel. 
 

PID and TVLQR controllers design  
The PID controller's gains, including kd (derivative 

gain), ki (integral gain), and kp (proportional gain), require 
adjustment. In Matlab, the Simulink Design Optimization 
software is employed for optimizing the PID gains while 
considering the actuator chain. The PID controller settings 
for the pitch channels are presented in Table 1. 

 

Table 1. The optimized PID parameter controller for pitch channel 
kp ki kd 

20.47 50.8965 4.709 
 

Table 2. The tuned matrixes Q, R of TVLQR and integral gain for 
pitch channel 

 𝑞   𝑞  𝑟 kf 

0 1319.4 0.1849 871.4 
 

The TVLQR controller is designed for the pitch channel 
of the nonlinear model. The state feedback gain, K, in 
equation (47), is calculated online through the Riccati 
equation (34), and the matrices R and Q in equations (36) 
and (37) are adjusted using Simulink Design Optimization. 
As the matrices A and B of the LTV model change with 

time, the state feedback gain, K, also varies dynamically. To 
drive the error to zero, the error signal is integrated with a 
gain, kf. The parameters for the TVLQR matrix Q and R, as 
well as the integral gain kf for the pitch channel, are 
presented in Table 2. 

Results 
Pitch angle response 

The initial value of the step unit reference signal is set 
at 40° (0.698 rad), and within the first second, it transitions 
to a final value of 41° (0.716 rad). Utilizing this reference 
signal, both the pitch channel PID and TVLQR controllers 
are implem. Figure 4 illustrates the pitch angle of the 
nonlinear model and the LTV model with the PID controller, 
highlighting that the LTV model closely approximates the 
behavior of the nonlinear model.  

 
Fig. 4. Pitch angle responses for nonlinear and LTV with PID 
controller 

Figure 5 displays the terms of the state feedback gain 
as described in equations (48) and (49). Figure 6 displays 
the nonlinear pitch responses for both TVLQR and PID 
controllers with a pitch step unit reference signal. The figure 
illustrates the plant's output signal, which is the pitch angle 
Φ(t), the pitch error represented as the difference between 
pitch demand and pitch angle, denoted as e(t), and the 
input signal to the plant, which is the pitch actuator 
deflection 𝛿 𝑡 . 
 

Wind effect  
To assess the impact of wind, the pitch error and 

actuator deflection are examined. Wind velocity is 
introduced in the opposite direction to the missile's velocity 
(Vm). Figure 7 how the TVLQR controller manages the 
effects of wind on pitch responses. 
 

Dynamics uncertainty 
The presence of uncertainties has a detrimental effect 

on the closed-loop system's capacity to track aerodynamic 
coefficients. In the case of the six-DOF nonlinear missile, a 
TVLQR controller is devised to address uncertainties in 
aerodynamic forces and moments [29]. It is possible to 
examine how the pitch channel autopilot responds to 
different levels of dynamic uncertainty. 

Figure 8 illustrates the pitch responses for PID 
controllers under varying degrees of dynamic uncertainty. 
Notably, when the pitch angle exceeds control limits, and 
the pitch actuator deflection saturates during the sustain 
phase, a PID controller proves inadequate in the face of a 
50% dynamic uncertainty. Figure 9 presents the pitch 
responses for TVLQR controller under dynamic uncertainty 
percentages. 

The TVLQR controller is capable of effectively 
managing different dynamic uncertainty percentages. 
Figure 10 illustrates the terms of the state feedback gain for 
various levels of dynamic uncertainty. 
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Fig. 5. The terms of state feedback gain 
 

 

 

 
 
Fig. 6. Pitch responses 
 

 

 

 
 

Fig. 7. Pitch responses with wind effect 
 

 

 
 

Fig. 8. Pitch responses for PID controller with different dynamic 
uncertainty percentage 
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Fig. 9. Pitch responses for TVLQR controller with different dynamic 
uncertainty percentages 

 

 
 
Fig. 10. The terms of state feedback with different dynamic 
uncertainty percentage 
 
Actuator uncertainty 

The following equation describes the relationship for 
actuator uncertainty, representing a disturbance affecting 
the actuator deflection (plant input): 

(53) 𝑢 𝛿 𝑑 

(54) 𝑑 𝛿 1  

where: λ  represents the uncertainty parameter, which 
equals 1 when there is no uncertainty (d = 0).  For instance, 
if the actuator uncertainty is 20%, then λ would be 
calculated as follows: λ 1 0.2 0.8.  

Figure 11 displays the pitch responses for the PID 
controller under varying actuator uncertainty percentages. 

Notably, the PID controller struggles to handle a 45% 
actuator uncertainty. During the sustain phase, the pitch 
actuator deflection becomes saturated, and the pitch angle 
becomes uncontrollable. Figure 12 illustrates the pitch 
responses for the TVLQR controller with different actuator 
uncertainty percentages. The TVLQR controller 
demonstrates its capability to effectively manage various 
levels of dynamic uncertainty 
 

 

 
Fig. 11. Pitch responses for PID controller with different actuator 
uncertainty percentage 
 

 
 

 
Fig. 12. Pitch responses for TVLQR controller with different 
actuator uncertainty 
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Conclusions 
In this study the optimal tuning parameters for both 

PID and TVLQR controllers are determined and compared 
using Simulink design optimization. The LTV model 
exhibits the closest resemblance to the nonlinear model 
for the six-DOF missile. The state feedback gains of the 
TVLQR controller change over time due to online 
calculations involving the Riccati Equation. The TVLQR 
optimal control, designed using the LTV model, was 
implemented on the nonlinear flying body in the pitch 
channel. A comparison of the responses between PID and 
TVLQR controllers reveals that both controllers effectively 
track the step unit reference signal in terms of pitch angle. 
However, TVLQR stands out as it provides the most 
desirable tracking with no overshoot during the first and 
5.8 seconds. Moreover, TVLQR exhibits no steady-state 
error after the initial second, in contrast to PID where a 
steady-state error was observed. 

The actuator deflection response in TVLQR surpasses 
that of the PID controller, where the actuator remains 
unsaturated within the first second. Additionally, TVLQR's 
response remains unaffected by the wind effect. TVLQR 
demonstrates its capability to handle 50% dynamic 
uncertainty and 45% actuator uncertainty, while the PID 
controller cannot achieve.  
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