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Streszczenie. Artykuł ten przedstawia analizę wpływu różnorodnych cech sygnałowych na klasyfikację stanu narzędzia w procesie frezowania płyty 
wiórowej, wykorzystując metody uczenia maszynowego. W badaniu zastosowano różne modele, takie jak XGBoost, Gradient Boosting, Drzewo 
Decyzyjne i Las Losowy, a następnie dokonano rankingu cech sygnałowych pod kątem ich ważności. Najważniejszą cechą okazał się sygnał 
'DataLow_0', który stanowił ponad 16% całkowitego rankingu. Kolejnymi ważnymi sygnałami zostały zidentyfikowane 'DataCurrent_2' oraz 
'DataLow_1'. W przeciwieństwie do nich, 'DataCurrent_1' okazał się być najmniej wpływowym sygnałem. Należy podkreślić, że względna istotność 
tych sygnałów może różnić się w zależności od konkretnego stanu narzędzia i użytego klasyfikatora. Chociaż ranking istotności  sygnałów daje 
ogólne zrozumienie ich roli, zaleca się dalsze badania z wykorzystaniem analizy eksploracyjnej i technik interpretacji modelu, aby dokładniej 
zrozumieć naturę związków między tymi sygnałami a celem klasyfikacji. Podsumowując, zrozumienie wpływu cech sygnałowych jest kluczowe dla 
efektywnego projektowania i optymalizacji modeli uczenia maszynowego stosowanych do klasyfikacji stanu narzędzi w procesie frezowania płyty 
wiórowej. (Wpływ cech sygnału na klasyfikację stanu narzędzia opartą na uczeniu maszynowym w procesie frezowania płyt wiórowych) 
 
Abstract. This study investigates the impact of various signal features on machine learning-based tool condition classification in the milling 
chipboard process. Different machine learning models such as XGBoost, Gradient Boosting, Decision Tree and Random Forest have been applied 
and the signal features have been ranked based on their importance. The highest ranking signal was 'DataLow_0', contributing over 16% of the total 
ranking. 'DataCurrent_2' and 'DataLow_1' were identified as the second and third most influential signals. On the contrary, 'DataCurrent_1' was 
found to be the least influential. It's essential to consider that the relative importance of these signals can vary depending on the specific tool 
condition and classifier used. Although signal importance rankings provide a relative understanding of these signals, further studies applying 
exploratory analysis and model interpretation techniques are recommended for an explicit understanding of the nature of the relationships between 
these signals and the target classification. In conclusion, understanding the influence of signal features is vital for effective design and optimization 
of machine learning models for tool condition classification in the milling chipboard process. 
 
Słowa kluczowe: Istotność cech sygnału, monitorowanie stanu narzędzia, uczenie maszynowe, frezowanie płyty wiórowej 
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Introduction 
 The application of sensor technologies to assess and 
enhance various phases of furniture production is an 
ongoing area of interest in automation-oriented research. 
The intricacy of this subject is considerable, involving 
numerous, high-precision steps that may need adjustments 
with every small alteration in components. Infusing 
advanced technologies into these procedures is an 
innovative approach that aids in their optimization. This 
becomes especially crucial in tool condition monitoring, 
where improper or ill-timed decisions about replacements 
can downgrade the product quality and cause losses for the 
manufacturing company [1]-[3]. 
 Our research primarily revolves around the milling 
process, where any misguided decisions can be immensely 
consequential. Deploying sensor-based technologies to 
keep tabs on tool conditions brings a renewed outlook to 
these issues. Evaluating tool conditions, as with other 
phases, can be performed manually, yet it is a laborious 
task that necessitates production halt. The automation of 
this process, therefore, signifies a notable progress in the 
industry. 
 A significant novelty introduced in this work is the use of 
sensor data to resolve the complex issues inherent in tool 
condition monitoring. While the manufacturing of furniture 
can involve a range of materials, wood-based ones are the 
most common. This approach to data-driven tool condition 
monitoring creates new avenues for enhancing 
manufacturing processes in this sector. There are 
numerous studies focusing on these elements. Depending 
on the specific task, different signals are analyzed and 
evaluated, determining their usefulness in identifying tool 
condition during various stages of the machining process 
[2], [4]-[8]. Despite the problems being well-described, there 
remains a requirement for an automatic, precise solution 
that is simple to integrate into production and feasible to 
implement in actual work settings.  

 Given the complex nature of the problem, machine 
learning algorithms appear to be the optimal solution. These 
algorithms have gained significant traction in manufacturing 
processes, and the pioneering approach proposed in this 
paper seeks to apply these techniques to tool condition 
monitoring. Existing research encompasses various 
methodologies, both for image- and sensor-based systems 
[9]-[11], [18], [19]. The method proposed here expands on 
these approaches, presenting innovative applications of 
machine learning algorithms for tool condition monitoring 
tasks. Depending on the chosen approach, various 
problems, their aspects, and potential applications of the 
suggested solutions are contemplated. Solutions like the 
one used for tree species recognition, presented in [12], 
demonstrate that machine learning algorithms can be 
tailored to even the most complex tasks with the right input 
data and training process. 
 When it comes to the specific problem of tool condition 
monitoring, the primary distinction pertains to the various 
components applied. While recording signals is a common 
practice, some solutions consider image use, often coupled 
with Convolutional Neural Networks (CNNs), which perform 
relatively well when such samples are considered [1], [13]-
[15]. Additionally, the training process can be optimized 
through transfer learning with various pretrained networks 
(like AlexNet [16]  prepared for ImageNet database [20]  or 
data augmentation. 
 The primary focus of this research is the practical 
application of a novel solution for tool state recognition, with 
input data based on the physical parameters of the used 
machinery. It is crucial for the given solution to facilitate 
easy implementation in the work environment, with high 
overall accuracy. The unique approach to feature 
generation, using Short-Time Fourier Transform (STFT) and 
Discrete Wavelet Transform (DWT) methods, distinguishes 
this work from previous studies. Various versions of the 
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method were tested for all selected, state-of-the-art 
classifiers, yielding more than satisfactory results. 
 The objective of this article is to investigate the impact of 
selected signal features on the construction of machine 
learning models for tool condition classification in the milling 
chipboard process. The signal features under consideration 
- Acoustic emission, Force X, Force Y, Noise level, 
Vibration level, Device-rated current, Device-rated voltage, 
Head-rated current, Head-rated voltage, Servo-rated 
current, Servo-rated voltage - have been identified as 
having the most significant influence on the performance of 
these models. 
 This study will delve into the utilization of these features 
within the context of well-known artificial intelligence (AI) 
models, namely Decision Tree, Gradient Boosting, Random 
Forest, and XGBoost. The aim is to enhance our 
understanding of their role and utility in developing 
predictive models that could optimally classify tool 
conditions, contributing to improved milling processes and 
results. 
 

Data Set 
The principal objective of the study detailed herein was 

to create a diagnostic apparatus that could proficiently 
evaluate the wear level of a tool without interrupting the 
manufacturing process. This assessment hinges on an 
array of signals gathered during the experiment. All trials 
and data collection were performed applying a Jet 130 CNC 
machining center (Busellato, Thiene, Italy), outfitted with a 
single, interchangeable 40 mm edge cutter head, equipped 
with a replaceable carbide cutting edge (Faba SA, 
Baboszewo, Poland). 

Tests applied a chipboard panel sample measuring 300 
mm by 150 mm. This component was securely fixed on a 
measuring platform. A groove with a depth of 6 mm was 
carved into the panel at a spindle speed of 18,000 rpm, and 
a feed rate of 0.15 mm per tooth. These operational 
parameters were chosen based on meticulous literature 
review and first-hand knowledge of the authors in chipboard 
milling operations. The chosen spindle speed and cutting 
depth are standard in the industry, and the feed rate was 
found to yield optimal surface finish and tool wear results. 

The state of the tool was categorized into three distinct 
conditions: Green, Yellow, and Red. The Green condition 
corresponds to a newly-minted, properly-functioning tool. 
Yellow designates a tool that, while somewhat worn, 
remains operational. Red, on the other hand, signifies a tool 
that requires replacement due to extreme wear.  

Throughout the experimental procedure, operations 
were momentarily halted to allow for physical inspection of 
the blade condition using a Mitutoyo TM-505 microscope. 
This instrument is well-suited for determining dimensions 
and angles and can also verify the shapes of screws and 
gears with an optional reticle. Using this apparatus, wear 
states were gauged and allocated to one of the three wear 
states following these regulations: 
 Green state corresponds to a VBmax in the range of 0–

0.15 mm, indicating four different levels of wear state; 
 Yellow state is assigned when VBmax falls within 

0.151–0.299 mm, reflecting two different levels of wear 
state; 

 Red state is deemed when VBmax exceeds 0.299 mm, 
also indicating two different levels of wear state. 

 The experimental setup incorporated a range of sensors 
able to collect a total of 11 different parameters, listed in 
Table 1. 
 Data from these sensors were collected using National 
Instruments PCI-6111 measurement cards (for measuring 

acoustic emissions) and PCI-6034E (for capturing other 
parameters). 
 
Table 1. List of Signal Types Utilized for Feature Extraction in AI 
Modelling of the Milling Chipboard Process. 

No. Signal name  Signal Description 
1 DataHigh Acoustic emission 
2 DataLow Force X 
3 DataLow Force Y 
4 DataLow Noise level 
5 DataLow Vibration level 
6 DataCurrent Device-rated current 
7 DataCurrent Device-rated voltage 
8 DataCurrent Head-rated current 
9 DataCurrent Head-rated voltage 

10 DataCurrent Servo-rated current 
11 DataCurrent Servo-rated voltage 

 

 The acquisition of data was conducted on a PC applying 
the Lab ViewTM (National Instruments Corporation, ver. 
2015 SP1, Austin, TX, USA) software environment using NI 
PCI-6034E and NI PCI-6111 data acquisition cards. To 
adequately capture the AE signal, a card with a high 
sampling frequency was required. For the remaining 
signals, a card with a frequency of 50 kHz.  
 All sensors were held stationary relative to the 
workpiece and the cutting zone throughout the entire 
measurement process to prevent potential irregular noises 
and changes in sound from influencing the training process. 
The structure of the data gathered during this stage is 
summarized in Table 1. 

 

Numerical Experiments 
 This section presents the empirical evaluation and 

results of the conducted experiments based on two different 
methods for feature extraction from signals: the Short-Time 
Fourier Transform (STFT) and the Discrete Wavelet 
Transform (DWT). Additionally, a range of classifiers have 
been applied to evaluate the effectiveness of the extracted 
features for tool condition classification in the milling 
chipboard process. Each method is summarized and the 
key results are reported. 
A. Short-Time Fourier Transform 

 We applied the Short-Time Fourier Transform (STFT) to 
divide the initial samples into 32-segment chunks according 
to their frequency. The Hamming window was used to 
define the range and avoid overlap, resulting in a total of 17 
segments per chunk. After processing the 11 recorded 
signals, the final feature set contained a total of 102 
variables (17 segments x 6 statistical features) for each of 
the signal subsets, thus yielding a comprehensive set of 
1122 variables. 

The computed STFT-based features offer an intricate 
insight into the time-frequency content of the signal, which 
serves as a rich source of information for further machine 
learning-based analyses. 
 

B. Discrete Wavelet Transform 
 The second method used was the Discrete Wavelet 

Transform (DWT), as discussed in the corresponding 
section. The input signal was decomposed into 
approximation coefficients (low-frequency components) and 
detail coefficients (high-frequency components) using a 
Symlet 5 wavelet. The procedure was iterated for seven 
decomposition levels. At each level, a set of statistical 
features was calculated from both types of coefficients, 
yielding 16 features per level. 

The DWT-based features, containing time-frequency 
characteristics of the signal at various scales, provide 
another powerful tool for machine learning analysis, 
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especially for applications where the frequency content 
varies over time. 

 
C. Hyperparameter Optimization 
 Following the feature extraction, we optimized the 
hyperparameters for the machine learning classifiers using 
an exhaustive grid search method. This optimization 
process significantly improved the efficiency and accuracy 
of the tested machine learning algorithms. Although 
exhaustive, the grid search method was crucial in 
identifying the best hyperparameter combinations, leading 
to enhanced model performance. 
 
D. Classifiers and Performance Evaluation 
 Four state-of-the-art classifiers have been applied to 
evaluate the extracted features [17]. These included simple 
classifiers like Decision Trees to more complex ensemble 
methods like Random Forest, Gradient Boosting and 
XGBoost. All classifiers were evaluated using both STFT 
and DWT feature sets. 
 This numerical experimentation process provides us 
with valuable insights into the importance of feature 
extraction techniques and the impact of choosing 
appropriate machine learning classifiers for tool condition 
classification in the milling chipboard process. The outcome 
also underlines the significance of hyperparameter 
optimization in achieving improved model accuracy and 
efficiency. 
 The outcomes of numerical experiments conducted for 
the Short-Time Fourier Transform (STFT) and Wavelet 
approach, including hyperparameter optimization for 
XGBoost, Gradient Boosting, Decision Tree, and Random 
Forest methods, are detailed in Tables 2 and 3 [17]. 
 
Table 2. Result of numerical experiments for the STFT approach 
with hyperparameter optimization for: XGBoost, Gradient Boosting, 
Decision Tree, Random Forest. 

No. Model Train [%] Test [%] 
1 XGBoost 100.00 76.32
2 Gradient Boosting 100.00 78.95
3 Decision Tree 97.30 73.68
4 Random Forest 100.00 92.11

 
Table 3. Result of numerical experiments for the Wavelet approach 
with hyperparameter optimization for: XGBoost, Gradient Boosting, 
Decision Tree, Random Forest. 

No. Model Train [%] Test [%] 
1 XGBoost 100.00 97.37
2 Gradient Boosting 100.00 94.74
3 Decision Tree 100.00 89.47
4 Random Forest 100.00 97.37

 
Significance of Signals in Classification 

In the process of tool condition classification in the milling 
chipboard process, machine learning models like XGBoost, 
Gradient Boosting, Decision Tree, and Random Forest are 
applied. These models can handle a variety of signals, and 
the impact of each signal can vary from one model to 
another. 

Table 4 presents a ranking of the importance of various 
signals, as assessed by an ensemble of the mentioned 
classifiers. The ranking values were obtained using a 
combination of the STFT and Wavelet approaches. The 
signal with the highest ranking is 'DataLow_0', with a score of 
426, accounting for 16.28% of the total ranking value. This 
suggests that this signal plays a significant role in the 
classification process. 

The next two most important signals are 'DataCurrent_2' 
and 'DataLow_1', which contribute 13.04% and 11.43% to the 

total ranking value respectively. The least influential signal in 
our ranking is 'DataCurrent_1', with a ranking value of 145 
and 5.54% of the total. 

However, it's essential to note that the relative importance 
of these signals can be context-dependent. For instance, 
while 'DataLow_0' has the highest ranking, other signals may 
become more important depending on the specific tool 
condition under consideration or the specific classifier used. 

It's also noteworthy to mention that while the ranking 
values give us an understanding of the signals' relative 
importance, they do not provide a clear understanding of the 
relationship between the signals and the classification output. 
To understand the nature of these relationships, further 
exploratory analysis and model interpretation techniques 
would be necessary. 

The findings of this analysis emphasize the importance of 
understanding the feature's impact on machine learning-
based tool condition classification in the milling chipboard 
process. By identifying the most influential signals, we can 
make more informed decisions when designing and 
optimizing these models. 

 
Table 4. Result of Signal Importance Ranking Table for STFT and 
Wavelet approach. 

# Signal  Ranking Ranking [%]
1 DataLow_0 426 16.28
2 DataCurrent_2 341 13.04
3 DataLow_1 299 11.43
4 DataLow_3 235 8.98
5 DataCurrent_5 229 8.75
6 DataCurrent_3 215 8.22
7 DataLow_2 210 8.03
8 DataHigh 199 7.61
9 DataCurrent_4 163 6.23

10 DataCurrent_0 154 5.89
11 DataCurrent_1 145 5.54

 Total 2616 100.00
 

Conclusions 
The importance of signals in machine learning-based tool 

condition classification during the milling chipboard process 
has been systematically analyzed in this study. Our findings 
demonstrate the varying impact of different signals on the 
accuracy of classification models. 

Our analysis has revealed that the signal 'DataLow_0' 
has the highest contribution in terms of the ranking value 
and percentage of total ranking. It is the most critical signal, 
accounting for over 16% of the total ranking. Following 
'DataLow_0', the signals 'DataCurrent_2' and 'DataLow_1' 
have been found to be the second and third most influential 
signals, contributing 13.04% and 11.43% respectively. 

On the other end of the spectrum, the signal 
'DataCurrent_1' demonstrated the least influence, with only 
a 5.54% contribution. Despite its lower ranking, it's essential 
to note that its contribution might vary under different tool 
conditions or when using different classification models. 
The flexibility of machine learning models enables them to 
adapt to different contexts and use features differently. 

While the ranking of signal importance provides a crucial 
understanding of the relative significance of these signals in 
classifying tool conditions, it does not offer an explicit 
understanding of the nature of relationships between these 
signals and the target classification. Therefore, further 
studies utilizing exploratory analysis and model 
interpretation techniques are recommended to unravel 
these intricate relationships.  
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