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Dissolved gas analysis based fuzzy logic feamework for power 
transformer asset management 

 
 

Abstract. Dissolved Gas Analysis (DGA) is a vital tool for monitoring power transformer conditions. Despite its effectiveness, current interpretation 
techniques lack consistency and often rely on personnel experience, leading to varied conclusions for the same oil sample. This paper proposes a 
fuzzy logic approach to standardize DGA interpretation, aiming to establish a uniform method for critical transformer ranking and informed asset 
management decisions. The approach integrates existing DGA interpretation techniques into an expert model, enhancing reliability. The model, 
developed from 338 oil samples, offers a consistent and accurate basis for transformer condition assessment and asset management. 
 
Streszczenie. Analiza rozpuszczonego gazu (DGA) jest niezbędnym narzędziem do monitorowania stanu transformatorów mocy. Pomimo swojej 
skuteczności, obecne techniki interpretacji nie są spójne i często opierają się na doświadczeniu personelu, co prowadzi do różnych wniosków dla tej 
samej próbki oleju. W niniejszym artykule zaproponowano podejście oparte na logice rozmytej w celu standaryzacji interpretacji DGA, mające na 
celu ustanowienie jednolitej metody klasyfikacji krytycznych transformatorów i świadomych decyzji dotyczących zarządzania aktywami. Podejście to 
integruje istniejące techniki interpretacji DGA w eksperckim modelu, zwiększając niezawodność. Model opracowany na podstawie 338 próbek oleju 
oferuje spójną i dokładną podstawę do oceny stanu transformatorów i zarządzania aktywami.   (Rozmyta logika oparta na analizie gazu 
rozpuszczonego do zarządzania aktywami transformatorów mocy) 
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Introduction 
Power transformers serve as crucial components within 

any transmission or distribution network. Ensuring the 
reliability of these devices and preventing catastrophic 
failures necessitates the adoption of effective monitoring 
and diagnostic techniques. The dielectric oil and paper 
insulation of transformers are pivotal in detecting incipient 
and rapidly developing faults, reflecting the overall health 
condition of the transformer (Abu-Siada and Islam, 2012). 

Various chemical and electrical diagnostic techniques 
are currently employed by utilities to assess the health 
condition of power transformers (Arshad and Islam, 2011). 
Among these techniques, Dissolved Gas Analysis (DGA) is 
widely utilized for detecting incipient faults in power 
transformers. Due to the operational stresses faced by 
transformers, oil and paper decomposition occur, resulting 
in the production of gases such as hydrogen (H2), methane 
(CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), 
carbon monoxide (CO), and carbon dioxide (CO2) 
(Hydroelectric, 2003). 

Different internal faults within a power transformer 
generate specific gases, allowing the determination of fault 
type and severity. However, the analysis becomes intricate 
when multiple faults coexist. For instance, partial discharge 
activity produces H2 and CH4, while arcing generates all 
gases, including trace amounts of C2H2. DGA aids in 
determining the quantity and type of gases present in 
transformer oil, facilitating the assessment of transformer 
failure rank (Liu et al., 2002). 

Several DGA interpretation techniques, such as the key 
gas method (IEEE std, 2009), Roger ratio method (Rogers, 
1978), and Duval triangle method (Duval, 2003), have been 
reported in the literature. However, these methods 
predominantly rely on personnel experience rather than 
rigorous mathematical formulation, and each has inherent 
limitations. 

Ratio methods, including Roger, IEC, and 
Doerenenburg, are valid only if a significant amount of the 
gas used in the ratio is present; otherwise, they may yield 
an invalid code and fail to identify the fault type. The key 
gas method, while conservative, is not widely accepted for 

in-oil immersed transformers, as it may label a transformer 
with condition 4 (imminent risk) even if the gas evolution 
rate is not consistently increasing. Duval triangle, while 
effective, lacks an area for normal DGA results, restricting 
its use to identifying fault types in faulty transformers, with 
no indication of incipient faults. 

Precise DGA interpretation remains a challenge in 
power transformer condition monitoring, with no globally 
accepted technique. Recent developments in DGA data 
history have prompted researchers to explore standardized 
approaches using mathematical and artificial intelligence 
(AI) techniques (Singh and Verma, 2008). AI applications 
aim to overcome the limitations of ratio methods, including 
the failure to identify fault types in the case of multiple fault 
conditions and the potential for invalid codes. 

A comprehensive study on 338 oil samples with known 
fault conditions revealed inconsistencies in various DGA 
interpretation techniques, leading to different conclusions 
for the same oil sample (Abu Siada and Islam, 2012). To 
address this issue, the study's consistency analysis results 
were utilized to develop a fuzzy logic model. This model 
incorporates key features from established interpretation 
methods such as Roger, Doerenburg, IEC ratio methods, 
key gas, and Duval triangle methods. The resulting model 
provides a unified output corresponding to a specific fault 
and recommends asset management actions based on all 
these techniques, ensuring a reliable and consistent 
decision regarding the health condition of transformer oil. 
Users can observe the output of each individual method for 
enhanced transparency and understanding.  
 
Fuzzy Logic Models 
 This section focuses on the development of fuzzy logic 
models aimed at standardizing decision-making in various 
Dissolved Gas Analysis (DGA) interpretation techniques. 
Each fuzzy logic model adheres to the fuzzy inference flow 
chart depicted in Figure 1. The model's input variables 
encompass the concentrations of the 7 key gases, 
measured in particles per million (ppm). The output of each 
model is categorized into five sets of membership functions, 
representing possible fault conditions observed in operating 
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transformers. Additionally, a membership function for the 
normal condition (F5) is included, as outlined in Table 1. To 
address scenarios where ratio methods may result in an 
"out of code" condition for certain DGA samples, a specific 
membership function (F4) is introduced. The output 
membership functions for all models are visually presented 
in Figure 2. 
 

 
Fig1. Flow Chart of Fuzzy Logic Model 
 
Table 1. Fault types 
Method F1 Thermal fault 

(Cellulose, Oil) 
F2 Electrical 
fault (Corona) 

F3 Electrical 
fault (Arcing) 

Roger Thermal fault 150 
ºC-700 °C 

Low energy 
electrical 
discharge 

High energy 
discharge 

IEC Thermal fault 150 
ºC-700 °C 

Low energy 
electrical 
discharge 

High energy 
discharge 

Doeren Thermal 
decomposition 

Low energy 
electrical 
discharge 

High energy 
discharge 

Duval Thermal fault 150 
ºC-700 °C 

Low energy 
electrical 
discharge - 

High energy 
discharge 

K. gas Over heated 
cellulose/ oi 

Low energy 
electrical 
discharge 

High energy 
discharge 

 
 Table 1 has been derived from Figure 3, illustrating 
distinct fault types and the corresponding significant gases 
produced by each fault. Cellulosic thermal decomposition 
yields CO and CO2 at lower temperatures than those 
associated with oil decomposition. Trace amounts of these 
gases can be found under normal operating conditions. Oil 
thermal decomposition initiates at higher temperatures, with 
C2H4 production beginning around 350 ºC. At 
approximately 450 ºC, H2 production surpasses other 
gases, leading to low-intensity discharges such as partial 
discharge and intermittent arcing. Around 700 ºC, increased 
C2H2 production causes high-intensity arcing or continuous 
discharge, as indicated in the IEEE standard (IEEE std, 
2009). 
 A set of fuzzy logic rules, presented in the form of (IF-
AND-THEN) statements, establishes connections between 
the input variables and the output. These rules are 
developed based on interpretative techniques derived from 
transformer diagnostic and test data. Each fuzzy model is 
constructed using MATLAB's graphical user interface tool, 
where each input undergoes fuzzification into various sets 
of membership functions. The defuzzification method 
employs the widely used center-of-gravity approach, where 
the desired output z0 is calculated as follows. 
 

(1)                                      𝑧଴ ൌ
௭.೎ሺ௭ሻௗ௭
೎ሺ௭ሻௗ௭

 

 

Here, μc(z) represents the membership function of the 
output. 
 
 The comprehensive fuzzy logic model consists of five 
sub-models, each representing one of the DGA 
interpretation techniques analyzed in this study (IEC, 
Roger, Doerenburg, key gas, and Duval triangle). The fuzzy 
model for the IEC method is elaborated upon below. A 
similar procedure was followed to construct the fuzzy 
models for the remaining interpretation methods. 

 
Fig2. Output Membership Functions of Fuzzy Logic Models 

 

 
Fig3. Fault Types and Corresponding Gas Generation 
 
 

 
Fig4. Surface Graphs Illustrating the Developed Rules for IEC 
 
Fuzzy Logic Applied to IEC Ratio Method 
 The established set of fuzzy rules that correlates the 
input and output variables for the IEC ratio method is 
illustrated in the 3D surface graphs (see Figure 4). To 
validate the model, specific inputs—C2H2/C2H4 (0.15), 
CH4/H2 (2.5), and C2H4/C2H6 (5)—were utilized, reflecting 
the findings from one of the transformer oil samples 
analyzed through Dissolved Gas Analysis (DGA). The 
numerical output from the fuzzy logic model is 7, as 
depicted in Figure 5. This result corresponds to F3 (arcing 
fault) in Figure 2. 
 

 
 
Fig 5. Fuzzy Rules for IEC Method 
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Fig6. Flowchart of the Proposed Methodology 
 
3. Proposed Approach 
 The novel approach is founded on integrating various 
Dissolved Gas Analysis (DGA) techniques into a unified 
prototype software model, as depicted in the flowchart 
presented in Figure 6. In this model, the key gas method is 
initially employed to assess the health condition of the 
transformer oil sample based on its DGA results. If the key 
gas method indicates a normal condition, the model reports 
this finding, and no further analysis is conducted. However, 
if the key gas method reveals an abnormal condition, the oil 
sample undergoes further scrutiny using Duval triangle and 
ratio methods (IEC, Roger, and Doerenburg) to precisely 
identify the fault type. 
 Each individual method is utilized to identify the fault 
type, and the overall decision (D) is calculated based on the 
consistency level of each method, following the equation 
below: 
 

(2)                            𝐷 ൌ
∑ ஼೔஽೔
೔సఱ
೔సభ

∑ ஼೔
೔సఱ
೔సభ

 

 
where: D represents the overall decision, Di signifies the 
decision from the i-th method, Ci denotes the consistency 
level of the i-th method, as computed in the work of Abu-
Siada and Islam (2012). 
 

 
 
Fig7. Comprehensive Fuzzy Logic Model 

 In instances where any of the ratio methods yields a 
ratio incompatible with the diagnostic codes, the decision 
value corresponding to that method is set to zero. The 
determination of a normal condition is solely attributed to 
the key gas method, whereas in the presence of a faulty 
condition, all methods collectively specify the fault. To 
actualize the flowchart outlined in Figure 6, individual fuzzy 
logic models for various Dissolved Gas Analysis (DGA) 
interpretation techniques are integrated into a unified fuzzy 
model, as depicted in Figure 7. The inputs to the overall 
model include the concentrations of the 7 key gases, and 
the output is represented by a numerical value 
corresponding to the failure rank of the transformer. 
 In this integrated model, the individual decisions from all 
five methods are weighted according to the consistency 
level of each method and are combined as per equation (1) 
to yield an overall decision (\(D\)). Testing the model with 
DGA data, as shown in Figure 7, reveals that both Roger 
and IEC ratio methods provide values greater than 8, 
corresponding to F4 in Figure 2 (out of code). 
Consequently, their contributions to the overall decision are 
eliminated. Additionally, Duval and Doerenburg methods, 
even though indicating a faulty condition, have their 
contributions eliminated by the model since the key gas 
method results in a normal condition. The flowchart in 
Figure 6 dictates that, in such cases, the overall decision is 
solely determined by the key gas method. 
 The model's accuracy has been validated using another 
set of DGA data with pre-known fault conditions collected 
from operating transformers or referenced in research 
papers such as (DiGiorgio, 2005). The model demonstrated 
a high level of agreement with the collected data. Based on 
the model output, an asset management decision can be 
made, as proposed in Table 2. 
 
Table 2. Asset Management Decision Derived from Model Output 
Fault Model 

output (D) 
Fault diagnosis Recommended 

decision 
F5 0≤D<2 No fault Continue normal 

operation 
F1 2≤D<4 Cellulosic / oil 

decomposition 
Overheated 
cellulose and or oil 

Exercise extreme 
caution 
Furan analysis is 
recommended 
Check generation rate 
weekly 
Reduce loading below 
70%  
Plan outage 

F2 4≤D<6 Corona in oil (Low 
intensity electrical 
discharge) 

Exercise extreme 
caution 
Check generation rate 
weekly 
Reduce loading below 
60%  
Plan outage 

F3 6≤D<8 Arcing in oil (High 
intensity electrical 
discharge) 

Exercise extreme 
caution 
Check generation rate 
daily 
Reduce loading below 
50% 
Consider removal 
from service 

 
Conclusion 
 This article introduces a novel approach to interpret 
dissolved gas analysis (DGA) results of transformer oil by 
integrating the strengths of existing interpretation 
techniques into a comprehensive expert model. Traditional 
methods currently lack consistency and may yield different 
conclusions for the same oil sample. Furthermore, a 
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significant number of DGA results fall outside the proposed 
codes of ratio-based methods. The proposed approach 
involves amalgamating all traditional DGA interpretation 
techniques into a unified fuzzy logic model. The 
consistency-weighted decisions from individual DGA 
interpretation techniques are amalgamated to provide a 
singular overall decision for each DGA sample. This 
decision signifies the transformer failure ranking, and an 
appropriate asset management action can be 
recommended based on the model output. 
 
Result 

The presented article introduces a novel approach to 
evaluating dissolved gas analysis (DGA) results 
independently and consistently through the application of 
fuzzy logic. The conducted research successfully 
establishes a model that addresses unexpected result 
variations inherent in traditional methods employed by 
contemporary studies. This model amalgamates different 
DGA interpretations and provides consistent outcomes 
based on the principle of consistency. The applied fuzzy 
logic approach offers a more comprehensive and reliable 
means of assessing the health of power transformers in the 
energy sector and making informed decisions for optimal 
management. 
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