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An Investigation into Harmonic Compensation using UPQC 
 
 

Abstract. Due to recent advances in power electronics, many non-linear loads absorb non-sinusoidal or deformed currents from  the power supply 
(harmonics generation). The reduction of this harmful distortion produced by these non-linear loads is very important in an electrical system. In this 
paper we present a Unified Power Quality Conditioner (UPQC) for the compensation of these voltage and current harmonic disturbances. Generally, 
UPQC has been considered as a source of current and voltage connected to the load (harmonic source). The approach is based on the principle of 
injection of harmonic current and voltage in the system, the same amplitude and the same inverse phase as the load current and voltage harmonics. 
In this article, we will present the operating principle of the UPQC and its modelling. The simulations results in the Matlab-Simulink environment 
show the efficiency of this device studied.  
 
Streszczenie. Ze względu na najnowsze postępy w energoelektronice wiele obciążeń nieliniowych pochłania z zasilacza prądy niesinusoidalne lub 
odkształcone (generowanie harmonicznych). Redukcja szkodliwych zniekształceń wytwarzanych przez obciążenia nieliniowe jest bardzo ważna w 
systemie elektrycznym. W tym artykule przedstawiamy ujednolicony kondycjoner jakości energii (UPQC) do kompensacji zakłóceń harmonicznych 
napięcia i prądu. Ogólnie rzecz biorąc, UPQC uznano za źródło prądu i napięcia podłączone do obciążenia (źródło harmonicznych). Podejście 
opiera się na zasadzie wstrzykiwania do układu harmonicznych prądu i napięcia, o tej samej amplitudzie i tej samej fazie odwrotnej, co harmoniczne 
prądu i napięcia obciążenia. W tym artykule przedstawimy zasadę działania UPQC i jej modelowanie. Wyniki symulacji w środowisku Matlab-
Simulink pokazują wydajność badanego urządzenia. (Badanie kompensacji harmonicznej przy użyciu UPQC) 
 
Keywords: Harmonics, Unified Power Quality Conditioner (UPQC), shunt active power filter, p-q theory, series active power filter. 
Słowa kluczowe: Harmoniczne, ujednolicony kondycjoner jakości mocy (UPQC), bocznikowy filtr mocy czynnej, teoria p-q. 
 
 
Introduction 

The quality of the electrical power is sensitive to the 
harmonic distortion, the latter present’s one of the main 
disturbances of the quality of power supply, following the 
development of the power electronics and the appearance 
of the nonlinear loads, often encountered by the Utilities, 
such as thyristor power converters, rectifiers, arc furnaces... 
[1]. the presence of harmonics leads to electromagnetic 
interference and solid-state device malfunction, transformer 
heating. Hence, it is necessary to reduce the dominant 
harmonics below 5% as specified in IEEE 519-1992 
harmonic standard [2].Hence increased severity of 
harmonic pollution problem attracted the attention of power 
electronics experts in last one decade and large numbers of 
publications have appeared on the development of 
equipment named as Active Power Filter (APF) to provide a 
dynamic adjustable solution to eliminate harmonics in ac 
mains [3] the APF allow to compensating the harmonics 
and unbalance, together with power factor correction. 
Modern active harmonic filters have superior filtering 
characteristics, smaller in physical size, more flexible in 
application compared to their passive counterparts. They 
are widely used in industrial, commercial, utility networks 
and in electric traction systems [4]. Active power filters can 
be classified according to their configurations, or their 
electronic power circuits or finally after their process control 
strategies. In general, they are divided into three main 
categories, namely shunt APF, series APF and hybrid APF 
[5][6].The APFs control has two main blocks: the first one 
generates the control reference signals and the second one 
carries out the control method [7].The harmonic 
compensation performance of an active filter depends 
mainly on the technique used to compute the reference, the 
design of inverter and the control method used to inject the 
desired compensation into the line [8]. Among the active 
filters is the UPQC. The  unified  power  quality  conditioner 
(UPQC)  is  a  kind  of  improvement  devices  with 
comprehensive compensation ability, which has functions of  
voltage  recovering,  harmonics  and  reactive  power 
compensating. They  are  always  installed  on  PCC  in 
distribution  system  or  important  power supply  inlet  to 
restrain the voltage and current quality problems[9].In this 
paper the model and control strategy of UPQC is presented.  

General structure Unified Power Quality Conditioner  
A conventional UPQC topology is developed with the 

combination of series active filter and shunt active filter 
connected back-to-back with common dc-link bus capacitor. 
The dc link capacitor reduces dc ripple current [10] [11]. 
The function of the shunt active filter keeps the source 
current constant when a nonlinear load is connected, so 
that it does not affect any other load connected to the 
system. The series active filter is to mitigate any harmonics 
in source voltage and always provides three phase 
balanced sinusoidal voltage to the load. It also maintains 
the load voltage constant when there is voltage flicker [12]. 
The basic configuration diagram of UPQC is shown in Fig.1 

 
Fig.1. Basic Configuration of UPQC  
 
Reference Current Signal Generation for Shunt APF 

The principle of the control strategy for shunt active 
power filter is to generate the reference current produced by 
the power filter to compensate for the harmonic currents 
required by the load [13]. In 1983, Akagi et al. have 
proposed the "The Generalized Theory of the Instantaneous 
Reactive Power in Three-Phase Circuits", also known as p-
q theory. It is based in instantaneous values in three-phase 
power systems with or without neutral wire, and is valid for 
steady-state or transitory operations, as well as for generic 
voltage and current waveforms [14].The p-q theory 
implements a transformation from a stationary reference 
system in a-b-c coordinates, to a system with coordinate’s 
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α-β. It corresponds to an algebraic transformation, known 
as Clarke transformation, which also produces a stationary 
reference system, where coordinates α-β are orthogonal to 
each [15].The voltages and currents in α-β-0 coordinates 
are calculated as follows: 
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The instantaneous real and imaginary power is: 

(4)                          
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Rewriting equation (4) in a-b-c coordinates the following 

expression is obtained:
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If we put: 
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From expression (4): 
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When the voltages are sinusoidal and supplying a 

nonlinear load, the instantaneous power p and q are 
expressed as: 

(8)
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With:  

qp,  : Mean value of instantaneous real and imaginary 

power.  
qp ~,~  : Alternating value of instantaneous real and 

imaginary power.  
The filtering method used for extracting the alternative 

power is shown in Figure.2. 

 
 
Fig.2. Principle of extraction the component alternative of p and q  

 
If replaced in (7), we find:   

(9)    
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So the harmonic current will be determined by the 

relationship: 

(10)
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If the inverse transformation is applied (Fig. 4), we write: 

(11)
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Fig.3. Principle of the p-q method 
 
Reference voltage signal generation for series APF 

Series active power filters are operated mainly as a 
voltage regulator and as a harmonic isolator between the 
nonlinear load and the utility system. by imposing a high 
impedance path to the current harmonics which forces the 
high frequency currents to flow through the LC passive filter 
connected in parallel to the load and gives obstruction to 
their stream from both load to source and source to load 
headings and in this manner goes about as a controlled 
voltage source[16,17].  The series APF control algorithm 
calculates the reference value to be injected by the series 
APF transformers, comparing the positive-sequence 
component with the load side line voltages. [18] The d-q-o 
theory is proposed for reference voltage signal generation. 
There are five steps to calculate the reference [19]: 

Step 1: Transform the three-phase voltage (Va, Vb and 
Vc) to αβ0 frame (Vα, Vβ and V0) by: 

(12)
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Step 2: Transform the Vα and Vβ to the dq-axis by: 

(13)               
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Step 3:  the dq voltage consist of two terms: 

(14)
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When qd ,VV and 

qd

~
,

~
VV are the DC components and 

AC component of the voltage on dq-frame, respectively. For 
this step, the high-pass filter (HPF) is used to separate the 

harmonic (
qd

~
,

~
VV ) components from the dq voltage 

(
qd ,VV ). Step 4: Transform the harmonic voltage on dq-

frame (
qd

~
,

~
VV ) from Step 3 to αβ-frame (  VV

~
,

~
) by: 

(15)
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Step 5: Calculate the three-phase reference voltage 

(Va*,Vb*,Vc*) 
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(16)
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Fig.4. Principle algorithm of the synchronous fundamental dq-frame  
 
Hysteresis control 

The hysteresis band current control technique has 
proven to be most suitable for all the applications of current 
controlled voltage source inverters in active power filters. 
The hysteresis band current control is characterized by 
unconditioned stability, very fast response, and good 
accuracy [20, 21].It imposes a bang-bang type 
instantaneous control that forces the UPQC compensation 
current (if) or voltage (vf) signal to follow its estimated 
reference signal (if,ref or vf,ref) within a certain tolerance 
band. This control scheme is shown in a block diagram form 
in Figure 06 [22, 23, 24, 25, 26, 27]. 

 
Fig.5. Conventional hysteresis band current controller 
 
Simulation results 

The module used for the simulations (See Fig.6) has the 
following parameters TABLE.1. 

 

 
Fig.6. Module used for the simulations in MATLAB/SIMILINK  
 
 

Table 1. Module parameters 
Parameter Values 

Power Source 

Voltage source (Vs) 400 V 
frequency  (F) 50 Hz 

Source resistance (Rs) 0.5Ω 
Source inductance (Ls) 3m H 

Non-linear load 
Load resistance (Rd) 10Ω 
Load inductance (Ld) 10mH 
Load capacitor (Cd) 0.24µF 

Shunt active 
filter 

Filter inductance (Lshn) 3.5mH 
Filter resistance (Rshn) 5 Ω 
Filter Capacitor (Cshn) 10 µF 

DC Link Voltage reference  (Vdcref) 700V 
Two series Capacitor 

(Cdc1,Cdc2) 
2200 µF 

Series active 
filter 

Filter inductance (Lser) 3.5mH 
Filter resistance (Rser) 5 Ω 
Filter Capacitor (Cser) 20 µF 

series Transformer 1KVA 
 
In the simulation study, we assume that the source 

voltages are balanced to show the dynamic response of 
FAS with two identification methods namely pq and dq 
controlled by hysteresis. 
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Fig.7. Source voltage before compensation 
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Fig.8. Harmonic spectrum of source voltage before 

compensation 
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Fig.9. Source current before compensation 
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Fig.10. Harmonic spectrum of source current before 

compensation 
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Fig.11. Harmonic voltage 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-400

-300

-200

-100

0

100

200

300

400
voltage mesure

temps (s)

vo
lta

ge
 (

V
)

 
Fig.12. Voltage injected by UPQC 
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Fig.13. Source voltage after compensation 
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Fig.14. Harmonic spectrum of source voltage after 

compensation 
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Fig.15. Harmonic Current 
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Fig.16. Current injected by UPQC 
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Fig.17. Source current before compensation 
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Fig.18. Harmonic spectrum of source current after 

compensation 
 

DISCUSSION 
The simulation results obtained are shown in figures 7 to 

18.- Figures 7 and 9 show the waveform of the voltage 
and the current of the source before the compensation, 
where we have clearly seen the deformation of their 
waveform.- According to figures 9 and 10, high values 
of total harmonic distortion (THD) of the voltage and current 
source are noted which are respectively 23.99% for the 
source voltage and 18.73% for the current source higher 
than the IEEE Standards 519.- After using our 
proposed device (UPQC), we notice a remarkable 
improvement on the waveform of the source voltage and 
the source current, which are becoming almost sinusoidal, 
as shown in figures 13 and 17, where we noted lower THD 
values (0.57% for the voltage and 1.16% for the current), 
which is well within the norm. 
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Conclusion 
This article presents a Unified Power Quality 

Conditioner (UPQC), the system was designed and 
modelled successfully using the Matlab / Simulink. The 
Unified Power Quality Conditioner consists of combined of 
active power filters series and shunt for simultaneous 
compensation of the voltage and current harmonic. The 
simulation results show that the UPQC is a reliable, efficient 
solution for compensation of harmonics problems , because 
we obtain at the end of the reduced, acceptable values of 
THD of the voltage and current (under norm used ). 
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