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Building an analytical model for inference, detection  
and early warning in UST measurements 

 
 

Abstract: This article will present the concept of creating an analytical model for inference, detection and early warning of detection of measurements, 
rapid measurement deviations, and the correctness of the process under study in ultrasonic tomography measurements. The research describes an 
algorithm's operation for inference, detection and early warning of the appearance of a stochastic trend in a time series. 
 
Streszczenie: W tym artykule została przedstawiona koncepcja stworzenie modelu analitycznego pozwalającego na wnioskowanie, wykrywanie i 
wczesne ostrzeganie wykrywania błędnych pomiarów, odchyleń pomiarowych, jak również prawidłowości przebiegu badanego procesu, w pomiarach 
za pomocą tomografii ultradźwiękowej. Prace badawcze opisują działanie algorytmu wnioskowania, wykrywania i wczesnego ostrzegania o pojawieniu 
się trendu  stochastycznego w szeregu czasowym (Budowa modelu analitycznego do wnioskowania, wykrywania i wczesnego ostrzegania  
w pomiarach UST). 
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Introduction 
In ultrasound tomography, we analyze the 

measurements (readings) from the xtRk sensors separately, 
where xt=(xt

1, xt
2,… xt

k) [1]. The occurrence of non-
randomness in the series {xj

i}1≤j≤t. The occurrence of non-
randomness in the series in the form of a trend, integration 
means the appearance of an inclusion in the field of view. 
The following will present an algorithm for dynamic analysis 
and detection of non-randomness at any time t based on the 
realization of the {xj

i}max(0,t-m)≤j≤t for each channel 1 ≤i ≤k. 

 

 

 

 

 

 

 

 

 

 
Fig.1. Signal analysis 

 

Randomization study 
In the case where the elements of the {xj

i}max(0,t-m)≤j≤t series 
for each 1 ≤i ≤k channel are identical, or evaluate randomly 
around a certain level, there is no indication of concern 
regarding the occurrence of additional inclusion in the 
viewing area. 

We use the var(xji)=const to check whether the 
measurements are constant. condition To check whether the 
elements of the {xj

i}max(0,t-m)≤j≤t series evolve randomly around 

the 𝑥‾ 𝑖 = ∑ 𝑥𝑗
𝑖𝑡

𝑗=𝑚𝑎𝑥(0,𝑡−𝑚) level we use the Wald-Wolfowitz 

test. We define the {j}max(0,t-m)≤j≤t, where 𝜀𝑗 = 𝑥𝑗
𝑖 − 𝑥‾ 𝑖 series 

(we apply the test to each channel separately) [2]. 
At the α level of significance, the working hypothesis is 
H0:no non-random component in the series of residuals 

{εj}, the elements of the series evaluate randomly around the 
zero level, against the alternative hypothesis 

H1: in the analyzed series {εj}1≤t≤N. 

For the series {j}max(0,t-m)≤j≤t,, there is a non-random 
component or the elements of the series are correlated. 

We first calculate the number of series S, where a series 
is called any subsequence consisting only of positive or 

negative elements, and then determine the number of 
positive residuals n1 and the number of negative residuals n2 
(zero elements are omitted). 

The random variable S tends asymptotically to the normal 

distribution N(m,2), where we estimate the estimators of the 
mean and variance of the random variable S as follows 

(1)   m̂ =
2𝑛1𝑛2

N
+ 1 

(2)   �̂� =
2𝑛1𝑛2(2𝑛1𝑛2−𝑁)

(N−1)N2
 

Statistic 𝑈 =
𝑆−�̂�

�̂�
, has a normal distribution of N(0,1). At the α 

significance level, we read the value of the critical statistic  

(3)  𝑢∗ = 𝐹−1 (1 −
𝛼

2
), 

where F denotes the distribution of the normal distribution 
N(0,1). If -u*<U< u*,then at the significance level of α there 
are no grounds for rejecting the working hypothesis H0 (in 
Ultrasound the algorithm does not report an alert, the 
channel readings fall randomly), otherwise we reject the 
working hypothesis H0 against the alternative hypothesis H1 
(there is a suspicion of non-random components, so we test 
stationarity in the series {xj

i}max(0,t-m)≤j≤t.[3]. 
 
Stationary time series 

Definition 1 A series {xt}t≥1 is called strictly stationary 

(stationary in the narrower sense) if for any m,t1,t2,....,tm, the 
joint probability distribution of m elements xt1,xt2,...,xtm is 

identical to the distribution of m elements xt1+,xt2+,...,xtm+. 
The definition shows that any series containing non-

random components (trend factor, seasonality factor, 
conjunctural factor) depending on time instant t are non-
stationary. From definition 1, it follows that for a stationary 

series at any time shift , the dynamic properties of the series 
remain unchanged. 

Definition 2 A series of {xt}t≥1, for which the second 
ordinary moment is finite ( Ext

2<∞ for t≥1), is called weakly 
stationary (stationary in the broader sense) if: 

• the expected value of the elements of the series 
does not depend on the moment t 

(4)  ∧
1≤𝑡≤𝑛

𝐸𝑥𝑡 = 𝑐𝑜𝑛𝑠𝑡, 
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• the covariance depends only on the shift of , 
while it does not depend on the moment t 

(5) ∧
1≤𝑡≤𝑁

  ∧
0≤𝜏≤𝑁−1

𝑐𝑜𝑣(𝑥𝑡 , 𝑥𝑡+𝜏) = 𝑐𝑜𝑣(𝑥0, 𝑥𝜏), 

A strictly stationary process with a finite second moment 
is a weakly stationary process. The inverse statement is not 
true. However, for Gaussian processes, a weakly stationary 
process is strictly stationary. 

 
TS and DS ranks 

Definition 3 A time series of the form {xt}t≥1 is stationary 
concerning the trend f(t) if the series of the form {xt-f(t)}t≥1 is 

stationary, where f() is a deterministic function. 
We call the time series a TS (Trend stationary) series 

relative to the trend. We define a differential operator  of the 
form 

(6)  
△ 𝜀𝑡 = 𝜀𝑡 − 𝜀𝑡−1,

△𝑘 𝜀𝑡 = △𝑘−1 𝜀𝑡 −△𝑘−1 𝜀𝑡−1
 

For any k  N. 
Definition 4 A time series of {xt}t≥1 is integrated into 

degree d (we denote it as {xt}t≥1~I(d)) if the series of {xt}t≥1 is 

nonstationary, while the differential series {dxt}t≥1 is 
stationary, with d being the smallest integer for which the 

stationarity property of the series {dxt}t≥1 is satisfied. 
The time series {xt}t≥1 integrated in degree d ≥1 is called 

a DS (Difference Stationary) series. If the time series {xt}t≥1  is 
stationary, we say that the elements of the series are 
integrated in degree zero and denote {xt}t≥1~I(0) [4]. 

 
Test stacjonarności 

To test for stationarity, we use the Augmented Dickey-

Fuller test. For the analyzed series {j}max(0,t-m)≤j≤t, where 𝜀𝑗 =

𝑥𝑗
𝑖 − 𝑥‾ 𝑖 at the α level of significance, we create the working 

hypothesis 
H0: The time series {εt}t≥1 is non-stationary - the degree 

of integration is greater than zero). 
and the alternative hypothesis 
H1: the time series of {εt}t≥1 is stationary, thus the 

elements of the series are integrated to a degree of zero. 
To verify the hypothesis, we analyze the equation 

(7) △ 𝜀𝑡 = 𝜅𝜀𝑡−1 + ∑ ϰ𝑖
𝑝
𝑖=1 △ 𝜀𝑡−𝑖 + 𝜖𝑡 , 

The row of autoregression p is selected to eliminate the 
correlation of external disturbances and 

(8)  𝑝 < [4 (
𝑁

100
)

0.25
], 

Thus, if \n0, then the time series {εt}t≥1 is non-stationary 
and the degree of integration is greater than zero. If, on the 

other hand (-2,0) then the time series of {εt}t≥1  is 

stationary. Unlike the Dickey-Fuller test (𝜘i=0 for i=1,2,...,p) 

the extended Dickey-Fuller test takes into account the 

components of t-i , i=1,2,...,p in order to eliminate the 

autocorrelation of the residuals of t for t≥1. 
Test statistics 

(9)  𝐷𝐹 =
�̂�

𝑆(𝜅)
, 

has a Dickey-Fuller distribution, where �̂� the estimator and 

S() -standard deviation of the  parameter. 
From the arrays for the Dickey-Fuller test, we read the 

critical value of DF*. If DF*≤DF, then at the significance level 
of α, there is no basis for rejecting the working hypothesis H0, 

the time series is integrated to a degree greater than one 

(t~I(l),l≥1). 
If DF< DF*, we reject the working hypothesis H0 in favor 

of the alternative hypothesis H1 at the level of significance, 
so the time series {εt}1≤t≤N satisfies the stationarity condition 
(the elements of the series are integrated to degree zero, i.e. 

((t~I(0)). 
Note If the series is non-stationary (contains a stochastic 

trend), we determine the degree of integration by successive 
differentiation and stationarity checks using the ADF test. 

The degree of integration is the smallest integer dN for 

which the property of stationarity of the series {dt}t≥1 is 
satisfied [2]. 

 
Algorithm 

The figure below shows a graphic description of the 
operation of the algorithm for inference, detection and early 
warning of the appearance of a trend or stochastic trend in a 
time series. Detection of non-randomness in the form of a 
trend or integration in the series on any channel means the 
possibility of the appearance of an insertion in the field of 
view [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Signal analysis 

 
 

Fig.2. Inference and detection algorithm 
 

Early warning and optimization 
Many methods are used to solve optimization tasks and 

inverse problems [6-15]. Early warning and optimization are 
based on measurement data. The algorithms discussed 
above allow analysis of Ultrasound tomography signals in the 
context of signal trend changes [16]. The analysis is 
performed in the time domain for each measurement 
channel. Figures 3-7 show examples for which a change in 
trend was detected. Figure 3 shows a case for which the 
signal trend does not change abruptly. Figures 4-7 
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showcases for which the trend change is significant. 
However, the analytical system needs to provide zero-one 
information (alert or no alert). Early detection of trend 
changes will allow early warning and optimization in the form 
of: 

- Detection of erroneous measurements - an erroneous 
measurement can occur if the probe is dirty or if it becomes 
detached from the test object.  

- Detection of rapid measurement deviations - These can 
result due to rapid changes inside the object under test 

- Correctness of the course of the studied process - If a 
change in the trend is expected, the magnitude of the trend 
change is analyzed. If the change is too large, a correction of 
the process parameters may occur and consequently, its 
optimization aimed at replicating the model process. 

 

 

 

 

 

 

 

 

 

 

 
Fig.3. Signal analysis 

 
The analyses above are performed directly on the 

measurement data, thus ensuring speed. If the analyses 
were performed on tomographic images or processed or 
averaged data, early warning and optimization would involve 
some delay due to the time required for adequate raw data 
processing. 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Signal analysis 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Signal analysis 
 

The developed code, operation schemes, and model will 
become part of an analytical system, allowing for the overall 

analysis and optimization of industrial processes studied by 
ultrasonic tomography. 

From the point of view of signal analysis, it is also 
important that the analyzed signal can be considered 
regardless of the excitation frequency of piezoelectric 
transducers. It is particularly important in the context of 
multimodality of the tomograph. 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. Signal analysis 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.7. Signal analysis 
 

Summary 
This article presents the concept of creating an analytical 

model that allows early warning to detect erroneous 
measurements. An algorithm for dynamic analysis and 
detection of non-randomness at any time is presented. Early 
warning and optimization are based on measurement data. 
The algorithms discussed above allow for analysing 
ultrasound tomography signals in the context of signal trend 
changes. 
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