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Diagnosis of a group of induction motors  
powered from a joint point using deep learning 

 
 

Abstract. The article presents the application of artificial intelligence based on deep learning algorithms for diagnostics of a group of induction 
motors. The group of diagnosed machines consists of four squirrel cage induction motors powered from one common point. For diagnostic purposes, 
similarly to the MCSA method, the stator current signal and additionally the supply voltage signal were used. In the research, the structures of 
convolutional neural networks - CNN were developed and then the training and testing procedure was carried out. The accuracy of the assessment 
obtained during the experimental tests was presented using the truth matrix. 

 
Streszczenie. W artykule przedstawiono zastosowanie sztucznej inteligencji opartej o algorytmy uczenia głębokiego do diagnostyki grupy silników 
indukcyjnych. Grupa diagnozowanych maszyn składa się z czterech silników indukcyjnych klatkowych zasilanych z jednego wspólnego punktu.  
Do celów diagnostycznych, podobnie jak w metodzie MCSA, posłużył sygnał prądu stojana i dodatkowo sygnał napięcia zasilania. W badaniach 
opracowano struktury konwolucyjnych sieci neuronowych - CNN a następnie przeprowadzono procedurę treningu i testowania. Uzyskana podczas 
badań eksperymentalnych dokładność oceny przedstawiona została za pomocą macierzy prawdy (Diagnozowanie grupy silników indukcyjnych 
zasilanych ze wspólnego punktu z wykorzystaniem sieci neuronowych o uczeniu głębokim). 
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Introduction 
Maintaining electric motors in the best possible technical 

condition is a key task in the context of the economic 
efficiency of a given industry using electric machines. In 
addition to the financial aspect, the risk of endangering the 
health and life of people in the vicinity of the working 
machine in the event of its improper use should also be 
taken into account. 

Diagnostics of electric motors can be done in two ways, 
which are commonly referred to as online [1-2] and offline 
[3]. The first method does not require the diagnostic team to 
shut down the machine for measurement and diagnostics. 
Examples of this are diagnostics using current signals - 
MCSA (Motor Current Signature Analysis) [4-7], 
vibroacoustic measurements [8] or thermal diagnostics [9-
10]. They allow non-invasive detection of electric motor 
defects such as cage bar failures, eccentricity, winding 
short circuits, lack of symmetry, motor unbalance, bearing 
damage. Offline diagnostic methods, on the other hand, 
require the machine to stop running. This is necessary in 
order to install the appropriate sensors or perform 
diagnostics while the electric motor is stopped. As an 
example of offline diagnostics, tests to verify the insulation 
condition of the machine windings can be given [11]. Based 
on the above, conclusions can be made about the pros and 
cons of each of the two diagnostic approaches mentioned. 
What diagnostic method will be used, what specific 
algorithms will be implemented depends largely on the 
financial capabilities of the owner of the object under study, 
physical capabilities, i.e. where the object is located and 
what access to it is, finishing with time and quality aspects 
depending on the needs of the principal or the standards 
set by law. 

Today, squirrel-cage induction motors account for about 
90% of all machinery operating in the broader industrial and 
power generation sectors. They owe their popularity to their 
low operating costs, diversity in the way they are powered, 
and ease in the context of controlling them in drive or other 
systems [12]. This, in turn, shows how important it is 
becoming to diagnose squirrel-cage induction motors and 
detect damage to their components at the earliest possible 
stage. 

One of the most popular diagnostic methods is the MCSA 
already mentioned in this article. It involves measuring 
current signals and analysing them. The genesis of this 
method comes from the need to diagnose hard-to-reach 
machinery on oil rigs [13-14]. Thanks to funding from the 
British government, it was possible to conduct research on 
the development of this method. With the passage of time, 
the method proved to be very effective in the context of 
electric motor diagnostics. Of course, in addition to 
measuring the current signal, it is necessary to process it 
properly. The MCSA method uses FFT (Fast Fourier 
Transform) analysis to process diagnostic signals for the 
extraction of relevant features. STFT (Short Fast Fourier 
Transform) analysis or Wavelet Transform are also most 
commonly used in diagnostic methods. Digital signal 
processing using these transforms makes it possible to 
extract from the signal waveforms diagnostic symptoms 
indicating the occurrence of machine damage in the 
frequency domain or in the time-frequency domain. 

Modern diagnostics of electrical machinery is, of course, 
different from classical diagnostic methods [15-16]. Many 
methods used today are based on past achievements and 
developed mathematical foundations. Advances in 
technology have increased the computing power of 
computers and improved the quality and accuracy of 
measuring devices and transducers. 

The development of digital and machine signal 
processing contributed to the growing interest in AI (Artificial 
Intelligence) issues. In the 20th century, the first AI 
algorithms were developed [17], the so-called classical 
methods. NN (Neural Network) neural networks were based 
on connecting inputs to its outputs. The simplest way to 
think of it is as n inputs and m outputs between which there 
are dependencies. These dependencies are very elaborate 
and arise at the NN learning stage in accordance with the 
programmed structure. As a result, we can obtain an 
algorithm capable of independently analysing the results 
(NN inputs) and making diagnoses based on them (NN 
outputs). Classical methods [18-19], however, required the 
user to provide information - in other words, the 
characteristics that the NN should pay attention to during 
the learning stage. On the basis of these characteristics, 
dependencies are formed and what further results in the 
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quality of the responses to the outputs that the developed 
network generates. Such solutions appear in the literature 
under the name ML (Machine Learning). In the last few 
years, networks named as Deep Learning (DL) have gained 
considerable popularity. These types of algorithms no 
longer require the user to perform significant digital 
processing of diagnostic signals or point out characteristic 
features of a given fault [20]. DL networks in their nature are 
designed to find patterns and features on their own during 
the training stage. This can cause some anxiety, since we 
are not sure what signal features the DL network will pay 
attention to. On the other hand, however, DL networks 
surpass human perception capabilities, so they can see 
such a set of features in the input data that are invisible to 
the human eye. This accounts for the great potential and 
popularity of DL networks these days [21-32]. 

Fig.1 illustrates schematically the differences between 
classical neural networks and those based on deep learning 
algorithms. 

 

 
Fig.1. Block diagram representing the differences between classical 
neural networks and those based on deep learning algorithms 

 
The article presented here is the beginning of the 

authors' research into a diagnostic solution for a group of 
machines from a central power point. The first step, 
however, is a study to identify whether there are symptoms 
from a faulty machine in the sample. For this purpose, the 
capabilities of Convolution Neural Networks (CNN) were 
used. Networks of this type dominate the fields of image 
analysis [33-35]. In the following part of the article, the 
adopted research methodology will be presented along with 
the digital processing of the signals and the CNN structures 
used. 

 
Concept for diagnosing a group of induction motors 
powered from a joint point 

Nowadays, industry encounters assemblies of machines 
working together, often in a single drive system. Diagnostics 
of individual motors would therefore require metering each 
motor and conducting separate diagnostic analyses. This, in 
turn, translates into increased costs due to the cost of 
additional sensors or maintenance work and the need to 
store much more information from the diagnostic tests 
performed. 

Therefore, the idea of diagnosing a group of motors 
based on joint signals was born. It is still important in the 
development of diagnostic research to continue the search 
for new solutions or the use of well-known methods with the 
support of new technologies and computer programs. In this 
study, the authors try to answer the question of whether it is 
possible to obtain the correct diagnosis about the state of a 
machine working in a machine complex based only on joint 
signals - measured at the input of the power supply system. 
Therefore, to begin with, the current signal and the supply 
voltage were measured. The tests were carried out in 
different operating configurations of individual machines. 
 

 
Fig.2 Laboratory station 
 

Laboratory station and signal acquisition 
For the purpose of the study, a stand was set up as 

shown in Fig.2. The stand consists of four low-power 
squirrel-cage induction motors manufactured by TAMEL 
SZJe 14a with the following nominal parameters: PN = 0.8 
kW, UN = 380 V, IN = 2,2 A, nN = 1400 rpm, cosφN = 0,74. 
One machine is marked as healthy, and therefore with no 
damage. The other three engines had damage to 1, 2 and 3 
rotor cage bars, respectively. For further consideration, the 
following motor designations were adopted: 

• S1 – damaged 1 rotor cage bars, 

• S2 – damaged 2 rotor cage bars, 

• S3 – damaged 3 rotor cage bars, 

• S4 – healthy. 
Damage to motor rotors was introduced manually by 

cutting a cage bar on one of the shorting rings. A sufficient 
number of bars were cut off to simulate the damage as 
listed above. 

On the laboratory station, shown in Fig.2, it is possible 
to carry out diagnostic tests on a group of engines in many 
operating configurations. The article presents the first phase 
of testing. The current in the joint supply line and, in 
addition, the voltage supplying the group of motors was 
selected as the diagnostic signal. The power supply 
scheme is shown in Figure 3. The measurement was 
carried out using an NI USB-6259 measurement card and a 
computer with MATLAB environment. The recorded signals 
were sampled at a frequency of 100 kHz. 

 

 
Fig.3. Scheme of laboratory station 

 
It should be noted that research on induction motor 

diagnostics has been carried out for many years. It is still 
important in the development of diagnostic research to 
continue the search for new solutions or the use of well-
known methods with the support of new technologies and 
computer programs. In their study, the authors try to answer 
the question of whether it is possible to obtain the correct 
diagnosis about the state of a machine operating in a 
machine complex based only on joint signals - measured at 
the input of the power system. Therefore, to begin with, the 
current signal and the supply voltage were measured. The 
tests were carried out in different operating configurations of 
individual machines. 
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Digital processing of the measured signals 
The focus of the research presented here is on the use 

of CNN to identify patterns characteristic of the damage 
under study. Before discussing the selected set of studies, it 
is necessary to explain the operation of CNN. These 
networks belong to the group of DL algorithms, which 
independently search for patterns based on a catalogued 
set of data [36-37]. The predominant achievements of CNN 
are observed in image analysis. The first question that 
arises is how to represent the measured signal in the form 
of an image? Probably the first thing that comes to mind is 
to save, such a signal waveform or its transform in the 
frequency domain, as an image file with popular extensions 
such as jpg or png. This type of situation is very common if 
we recognize with CNN what is in a given image. The 
situation becomes much more complicated in the case of 
electrical signals. Of course, in the case of thermal 
diagnostics, the analysis of thermograms with DL networks 
poses no problem, and such solutions are currently used. 
On the other hand, analysis of images using DL requires 
considerable attention mainly because of the possibility of 
losing a lot of key information contained in the measured 
signal as shown in Figure 4. 

 
Fig.4 Comparison of data resolution: A - data in matrix form; B - 
data saved as an image file. 
 

In the rest of the article, the data under consideration 
will be referred to as signal images. However, at this stage 
it is necessary to explain what a image is. For a human, it is 
a graphical form of representation of something. For a 
computer, on the other hand, it is a matrix of numbers. For 
colour images, it is a 3D matrix and for black and white 
photos, the matrix has a dimension of 1D. In this study, the 
authors assumed that the image means data in the form of 
a matrix. 

The measured signals of both current and voltage are 
represented by a vector. Thus, in order to obtain a matrix 
representing a given signal, a transformation from vector to 
matrix must be performed. The selection of the size of such 
a matrix is also an important element. Each individual 
element of the matrix represents one input of the neural 
network. For example, a matrix of size 10x10 will require as 
many as 100 NN inputs. The same will be the case with the 
dimension of a graphic image, where the size is given in 
pixels - one pixel is one input. 

 

 
Fig.5. Diagram of signal conversion from the form of a vector to a 
matrix and finally to an image. L, H, W - dimensions of the vector 
and matrix; I, II, III - layer number. 

Figure 5. illustrates how the measured signal is 
converted from vector to matrix form. The size of the matrix 
was chosen empirically, although the main criterion was 
that a single matrix should cover at least one full period of 
the signal. In our case, 1000 samples were sufficient to 
capture one period of the signal. Accordingly, the 
dimensions H and W of the matrix had to be found in 
divisors of the number 1000. Of course, it is possible to use 
more samples in the input. However, it should be borne in 
mind that this approach will affect the duration of the NN 
learning stage. The final adopted dimension of the input 
matrices was 25x40. 

Figure 5 also shows further conversion to a 3D matrix. 
The three layers indicated can be interpreted as 3 different 
signals. Suppose we measure current, voltage and 
instantaneous power simultaneously. Each signal is one 
layer. The combination of the 3 layers is interpreted by the 
computer as a single image. Of course, a one-dimensional 
matrix can be generated too. 

 

 
Fig.6. Diagram showing the process of creating a data set for CNN 
analysis 

 
Figure 6. shows the methodology adopted in the 

process of creating data sets. The assumption of the 
research was that the final neural network should be able to 
assign data to the following classes:  

1. 3 induction motors with damage are working, 
2. 2 induction motors with damage are working, 
3. 1 induction motor with damage is working. 

In each class, all possible combinations of motor 
operation under rated load were studied. The combinations 
were labelled as operation variants in Figure 6. The current 
and supply voltage signals labelled I and U were selected 
as diagnostic signals. The third layer, labelled 0, is an 
empty matrix serving as a complement to the input 3D 
matrix, which does not affect the output of the CNN in any 
way. In this way, data sets were obtained for later analysis 
using the CNN network. 
 
CNN Structures 

Building the structure of the CNN network was done 
empirically. There are no general and universal rules for 
building CNN structures. However, it is possible on the 
basis of the experience of other researchers to draw 
confident conclusions about the rules for building structures, 
but in principle there is no general set of rules. 

In practice, ready-made network structures are also 
available. These are structures with a huge number of 
parameters that have undergone a training process on 
datasets of thousands or even millions of cases. Such 
structures can be used for diagnostic purposes. However, 
the question arises whether this is optimal? Is the use of a 
structure with millions of parameters necessary for 
diagnostic issues that do not need the ability to verify 
thousands of cases just four or five? Examples of structures 
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from the Pretrained Deep Neural Networks group are these 
(the number of parameters in millions is given in 
parentheses):  

• SqueezeeNet (1,24), 

• GoogLeNet (7), 

• ResNet-18 (11,7), 

• ResNet-50 (25,6), 

• NASNetLArge (88,9), 

• DarkNet-19 (20,8). 
These are just a selection of the structures available in 

the MATLAB DeepLearning Toolbox. The number of 
parameters determines the capabilities of a given structure. 
It can be said that a larger number of them results in better 
data recognition and classification skills. However, too 
many parameters increase the time the network takes in the 
learning stage. 

In the development of the CNN's own network structure, 
the MATLAB environment with appropriate tools was used. 
Fig. 7 shows a preliminary schematic of the structure with 
listed blocks necessary for the correct operation of 
convolutional neural networks. 

 

Below, a brief characterization of the individual layers: 

• INPUT – input layer, in which the size of the 
data is declared, 

• CONVOLUTION – layer that performs 
mathematical splicing operations on matrices, 

• BATH NORMALIZATION – a layer that 
performs mathematical splicing operations on 
matrices A layer that normalizes the learning 
data set to reduce sensitivity to the initial 
network parameters, 

• MAX POOLING – layer to reduce the size of 
the input data, 

• ReLu – activation function, 

• FULLY CONNECTED – layer that performs 
data multiplication before the corresponding 
weights, 

• SOFTMAX – calculation layer based on 
softmax function, 

• CLASSIFICATION – output layer, which 
classifies the input data into the appropriate 
classes. 

 

Fig.7. Base diagram of the developed convolutional neural network in MATLAB software 

 
Building the structure consisted of modifying the layer 

labelled CNN LAYER. The other elements remained 
unchanged. The authors sought the best structure by 
adding more CNN LAYER in a serial way. Structures 
containing 3,4,5 and 6 CNN LAYER were tested. Each trial 
consisted of changes in the number of CONVOLUTION 
layer filters. 

 

Table 1 Selected structures developed 

Structure 
Number of 

CNN LAYER 
Number of CONVOLUTION 

layer filters 

I 3 15-12-5 

II 4 60-40-20-10 

III 5 60-45-30-15-5 

IV 6 60-50-40-30-20-10 

 
The structures studied had about 50-60 thousand 

parameters, which is a huge difference compared to the 
aforementioned Pretrained Deep Neural Networks 
structures. However, for a study containing only 3 classes, it 
does not seem necessary to use structures with such a 
huge number of parameters. 
 
Results 

The prepared data sets according to the scheme shown 
in Figure 6 were used in the process of learning 
convolutional neural networks. This stage requires three 
packages from the user, they are respectively: training 
package, validation package, testing package. The process 
of training the network involves searching for all the 
parameters of the structure so as to obtain the best possible 
match between the training data and the validation data. 
The prepared data set contained 1200 image samples, 
which can be evenly divided into three packages of 400 
samples each. 

Figures 9 through 12 show the truth matrices. They 
graphically represent the accuracy of a given structure. The 
values on the main diagonal represent an error-free match 

of the output data to the target class. The matrices on the 
left represent the matching of the data from the test suite 
and therefore the suite that was considered in the CNN 
learning process. In each case, the accuracy was more 
than 99%, which is an optimistic result, but the research 
cannot end there.  

In the field concerning artificial intelligence, there is a 
phenomenon called network overlearning or learning by 
heart. This means that a learned network structure can only 
analyse and classify data locally - within what it has 
learned. The idea behind AI is that it should be able to look 
at a problem globally. 

Therefore, a new data set prepared in accordance with 
the covered methodology was used for the following tests. 
The new data set was obtained in another measurement a 
few days later. It can be inferred that this measurement, 
which took place under the same conditions, would achieve 
accuracy at an equally high level. Unfortunately, an average 
match of 60%-62% was obtained at the testing stage. This 
shows how important it is to test developed structures on 
data that are not known to her. This type of approach 
ultimately allows us to determine whether the structure can 
analyse a given issue. 

Right side of the Fig. 9 to Fig. 12 contain the truth 
matrices obtained when testing the developed structures 
using the new set. We can see the significant amount of 
wrong answers the structure gave compared to how it 
answered based on the learning set. 
 
Table 2 Summary of the accuracy of each structure 

Structure 
Testing –.  

learning set 
Testing –.  

unknown set 

I 100 % 65,33 % 

II 100 % 57,75 % 

III 100 % 66,75 % 

IV 100 % 64,69 % 
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Fig.8. Truth matrices for structure I 

 
Fig.9. Truth matrices for structure II 

 
Fig.10. Truth matrices for structure III 

 
Fig.11. Truth matrices for structure IV 

 
Table 2 summarizes the percentage of accuracy of the 

presented structures. The obtained values are not 
satisfactory enough. In the context of machine diagnostics, 
it is unacceptable to make a diagnosis based on such an 
unreliable result. 

During the study, it was noted that CNN during the 
repeated training process with the same settings of the 
learning algorithm, show completely different accuracy. 
Sometimes higher and sometimes lower matching accuracy 
was obtained for unknown data. Another study was 
conducted to look for the highest possible match. After 
many attempts, a match of about 69% was obtained and 
eventually the CNN was able to be trained so that when 
tested on unknown data it could correctly classify it at a 
level of 73.11% - as shown in Figure 12. 

 

 
Fig.12. Truth matrices structure I - best fit (Test accuracy on 
learning data - 100%, test accuracy on unknown data - 73.11%) 

 
Based on the truth matrix shown in Figure 12, it can be 

concluded that the CNN can almost flawlessly classify the 
variant of operation during which 3 motors with damage 
operate (1156/1200 - 96.33%). Also, it can relatively well 
indicate, on the basis of power signals, the variant of 
operation during which 2 motors with damage are working 
(903/1200 - 75.25 %). In contrast, the network cannot 
effectively classify the case in which 1 motor with damage is 
operating (573/1200 - 47.75 %). The conclusion that 
emerges is that the biggest problem is in distinguishing 
between class 2 and class 3. 
 
Summary 

The presented research on the diagnosis of a group of 
induction motors using CNNs is just the beginning. The 
topic should be further developed, which is not a major 
challenge given the continuous technological progress of 
digital technology devices. Thus, it is possible to implement 
the prepared neural networks on FPGAs and apply them in 
the wider industry. However, it should be remembered that 
such solutions must be sufficiently tested in the laboratory 
so that they can later be left in normal operation 
unattended. 

Summing up the presented research, it should be 
considered that convolutional neural networks are for issues 
related to the diagnosis of electrical machines a new tool 
that can both assist the diagnostician and completely 
replace him. These networks need to be reliably developed 
and tested. The key to CNN is the proper selection of data. 
This is not to discount the capabilities that AI has, but it is 
important to remember that these are algorithms that are 
not infallible. They mimic the human learning and 
perception process and try to go beyond human perceptual 
capabilities. However, the key is what data the artificial 
intelligence has. If this data contains a lot of errors or is 
inaccurate then AI learning can be compared to human 
learning based on an outdated encyclopaedia. 
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