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New alpha max and beta min algorithm 
 
 

Abstract. In this paper we present an improved version of alpha max plus beta min algorithm. We have proposed a new algorithm for approximating 
the alpha max and beta min coefficients. This leads to less complex algorithm formulas. Hardware architecture of alpha max plus beta min algorithm 
is also presented and analyzed.  
 
Streszczenie. W artykule przedstawiono ulepszoną wersję algorytmu alfa max plus beta min. Zaproponowaliśmy nowy algorytm aproksymacji 
współczynników alfa max i beta min. Prowadzi to do mniej skomplikowanych formuł algorytmów. Zaprezentowano i przeanalizowano architekturę 
sprzętową śtego algorytmu. (Nowy algorytm: alfa max i beta min) 

 
Keywords: complex number magnitude, alpha max and betha min algorithm. 
Słowa kluczowe: obliczanie modułu liczby zespolonej, algorytm alfa max and beta min. 
 
 

Introduction 
The calculation of the magnitude of complex numbers is 

essential in processing signals from devices like Synthetic 
Aperture Radars (SAR) and spectrum analyzers. These 
devices typically use Fast Fourier Transform (FFT) 
processors, which output real and imaginary parts of 
harmonics. To obtain spectrum samples, the magnitudes of 
these harmonics must be calculated in real-time, 
necessitating high-speed circuits with the minimu delay. This 
demand limits the choice of algorithms and drives the 
continuous search for new or improved algorithms. 

This work introduces a non-iterative approach for 
calculating magnitude with the controlled error, based on an 
improved version of the alpha max and beta min algorithm. 
The magnitude error is managed by selecting an appropriate 
number of approximation regions; more regions result in 
smaller errors. Previous literature detailed an approximation 
with two regions, but this work extends the algorithm to 
accommodate any number of regions. It establishes 
a relationship between maximum error and the number of 
regions, enabling the determination of the necessary regions 
for a specified error. The key to the improved algorithm is 
selecting the correct approximation region, guided by the 
quotient of arguments. 

In the first section we review magnitude calculation 
algorithms, in next section we present the generalized 
magnitude approximation algorithm and then we discuss 
experimental results and square rooter architecture. 

 
Review of known algorithms 

A magnitude calculation algorithm usually includes 
squaring of arguments and square rooting. Squaring is 
a relatively simple operation and can be performed by 
multiplication or for small-length binary words by look-up and 
addition. Therefore we review only these magnitude 
calculation algorithms that perform square-rooting in the form 
suitable for the fast hardware implementation. 

Square rooting algorithms which are commonly used for 
hardware implementations can be divided into two distinct 
categories: iterative and non-iterative algorithms. The 
iterative algorithms are often used but they usually require 
a considerable number of iterations to obtain the square root 
with an acceptable accuracy. The non-iterative algorithms 
[1,2] are highly desirable but the maximum acceptable error 
bound is difficult to provide. The iterative algorithms can be 
divided into three main groups: Newton-Raphson [6,10] 
method based algorithms, digit-by-digit algorithms [3,4,10] 
and CORDIC algorithms [5,10]. 

In the Newton-Raphson method based algorithms an 
estimate of the square root is obtained in each iteration [9]. 
The main disadvantage of these algorithms is the 
dependence of the error upon the number of iterations and 
the starting point. These algorithms can be transformed into 
a non-iterative form but the general division and 
multiplication are needed that slow down the execution of the 
algorithm. Moreover, the calculation error for a fixed number 
of stages strongly depends upon the choice of the starting 
point. 

In digit-by-digit algorithms one-digit result is produced in 
every step of calculations by inspecting the shifted partial 
remainder which is derived from previous digit selections. 
Two forms are known: the restoring algorithm and the non-
restoring algorithm which does not restore the remainder and 
requires less hardware resources. In practice the modified 
versions of non-restoring binary shift-subtract algorithms are 
used [6-8].  

The CORDIC based algorithms belong to the third class 
of iterative algorithms, which can be adopted for the efficient 
square rooting computation. The typical CORDIC 
implementation of the square rooter requires typically several 
dozen clock cycles to calculate the results, without including 
input and output data processing. The CORDIC hardware 
uses two adders and two shift registers at each 
computational stage. The number of stages depends on the 
type of arithmetic used and the dynamic range of the input 
signal. For small dynamic ranges, for example 11-12 bit, six 
to eight computational stages may be required to achieve the 
small error of the result. For greater dynamic ranges, for 
example 16-bit, the number of stages may increase to 11-12. 
After completing the basic computations the signal 
normalization is needed, that is a multiplication by a suitable 
constant. This constant is a product of factors emerging at 
every CORDIC step due to the nature of the algorithm. 

If the radicand is the sum of squares, the alpha max plus 
beta min algorithm [1] can be applied. This algorithm in its 
original version uses up to two approximation regions and 
allows to compute the magnitude of a complex number 
without division and without iterations. In principle until 
recently there existed two variants of the algorithm [9] which 
allows to compute the magnitude with the error not 
exceeding 3.95%, and with 1% respectively. In the previous 
version alpha and beta formulas were derived assuming an 
approximation error criterion, which led to complicated form 
of the obtained equations. In this work, two versions of the 
algorithm for determining alpha and beta coefficients have 
been derived for various error criteria. In the first case the 
same dependence was used for the error function as in [9] 
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but we obtained a simpler form of the formula for the 
coefficients. In the second case the different error criterion is 
used that leads to even more simplified formulas for the 
coefficients, but at the expense of a slight increase in the 
approximation error. Simple forms of mathematical 
relationships obtained in this way can be used when 
calculations are necessary on an ongoing form, e.g. the 
processing is performed using a microcontroller. 
 
New alpha max plus beta min algorithm 

The formula for calculating the magnitude of a complex 

number is |𝑧| = √𝑃2 + 𝑄2  where 𝑧 = 𝑃 + 𝑗𝑄. Computation of 

|𝑧| requires squaring and taking the square root, which is 
inefficient i.e. in hardware. 

 Let us define 
 

(1)    𝑥 = max (|𝑃|, |𝑄|) 

(2)    𝑦 = min (|𝑃|, |𝑄|) 
 

We can approximate the magnitude by 
 

(3)              √𝑥2 + 𝑦2 = 𝛼 𝑥 + 𝛽𝑦 
 

Substituting 
𝑥

𝑦
= 𝑡𝑎𝑛 𝜃 into (3) we get 

 

(4)         √1 + tan2 𝜃 = 𝛼 + 𝛽 𝑡𝑎𝑛 𝜃 
 

After rearrangement of terms we receive 
 

(5)     1 = 𝛼 𝑐𝑜𝑠 𝜃 + 𝛽 𝑠𝑖𝑛 𝜃 
 

For each angle 𝜃 and a set of pairs (𝛼, 𝛽) equation (5) 
should be satisfied. But we have to approximate a constant 
one in (5) for 𝜃 ∈ [0, 𝜋/4] by using one or several chosen 

pairs of (𝛼, 𝛽). For more exact approximation there should be 

the distinct pair (𝛼, 𝛽) for given angle 𝜃. The assignment of 

the pair for each 𝜃 would be ineffective. For general case we 

shall adopt denotations: 𝜃𝑠- start of approximation region, 𝜃𝑒 

– end of the region.  Therefore, the range [0, 𝜋/4] is divided 

into a number of regions (𝜃𝑠(𝑖), 𝜃𝑒(𝑖)), 𝑖 = 1,2, … , 𝑛  with the 

appropriate pair (𝛼𝑖 , 𝛽𝑖) assigned to each of them, that will 
give an approximation of (5) with an acceptable error. The 
approximation error for the i-th region is given by 

 

(6) 𝑒𝑖(𝜃, 𝛼, 𝛽) = (𝛼 − 𝛼𝑖) cos 𝜃 + ( 𝛽 − 𝛽𝑖) sin 𝜃, 𝑖 = 1,2, … , 𝑛 
 

where (𝛼, 𝛽) are exact values that should be used for the 

given pair (𝑥, 𝑦)  and (𝛼𝑖 , 𝛽𝑖) are approximating values for the 

i-th region. Using (5) we can eliminate 𝛼, 𝛽 in (6) what gives 
 

(7)   𝑒𝑖(𝜃) = 1 − 𝛼𝑖 cos 𝜃 + 𝛽𝑖 sin 𝜃, 𝑖 = 1,2, … , 𝑛 
 

Approximation of the magnitude has been simplified to 
approximating a constant value of one. The right-hand side 
of (7) can approximate this constant using various methods. 
In this work, we use two types of error approximation.  

In the first version, we impose that the approximation 
error for both ends of the interval and at a certain 𝜃𝑚𝑎𝑥 within 
the interval is equal. This leads to the following equations  

 

(8a)   𝑒(𝜃𝑠) = 𝑒(𝜃𝑚𝑎𝑥) 

(8b)   𝑒(𝜃𝑒) = −𝑒(𝜃𝑚𝑎𝑥) 
 

where 𝜃𝑚𝑎𝑥 = 0.5(𝜃𝑠 + 𝜃𝑒)  is chosen as the midpoint angle 
of the interval. Using (6) and (7) in (8a) and (8b), respectively, 
we receive two equations 
 

(9a)     1 − 𝛼 cos 𝜃𝑠 − 𝛽 sin 𝜃𝑠 = 1 − 𝛼 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 − 𝛽 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 

(9b)     1 − 𝛼 cos 𝜃𝑒 − 𝛽 sin 𝜃𝑒 = 𝛼 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 + 𝛽 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 − 1 
 

After transforming these equations, we obtain the first 
version of new algorithm for alpha and beta 

 

(10a)   𝛼 =
2(sin 𝜃𝑚𝑎𝑥−sin 𝜃𝑠)

sin(𝜃𝑒−𝜃𝑠)+sin(𝜃𝑚𝑎𝑥−𝜃𝑠)−sin(𝜃𝑒−𝜃𝑚𝑎𝑥)
 

(10b)   𝛽 =
2(cos 𝜃𝑠−cos 𝜃𝑚𝑎𝑥)

sin(𝜃𝑒−𝜃𝑠)+sin (𝜃𝑚𝑎𝑥−𝜃𝑠)−sin (𝜃𝑒−𝜃𝑚𝑎𝑥)
 

 
In the second version we impose approximation error as 

 

(11a)        𝑒(𝜃𝑠) = 𝑒(𝜃𝑒) 

(11b)        𝑒(𝜃𝑚𝑎𝑥) = 0 
 

Similarly as before, using (6) and (7) in (11) we have 
(12a)     1 − 𝛼 cos 𝜃𝑠 − 𝛽 sin 𝜃𝑠 = 1 − 𝛼 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 − 𝛽 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 

(12b)     𝛼 𝑐𝑜𝑠 𝜃𝑚𝑎𝑥 + 𝛽 𝑠𝑖𝑛 𝜃𝑚𝑎𝑥 − 1 = 0 
 

Finally after transforming (12) we obtain new formulas for 𝛼, 𝛽  
 

(13a)         𝛼 =
sin 𝜃𝑚𝑎𝑥−sin 𝜃𝑠

sin (𝜃𝑚𝑎𝑥−𝜃𝑠)
 

(13b)         𝛽 =
cos 𝜃𝑠−cos 𝜃𝑚𝑎𝑥

sin (𝜃𝑚𝑎𝑥−𝜃𝑠)
 

The above equations for 𝛼 and 𝛽 have a simple form, which 
may be beneficial when these coefficients have to be 
calculated in real time. 
 
Algorithm for calculating magnitude of complex number 

In presented algorithm we always assume a constant 
number of regions. Certain values of 𝑟 = 𝑦/𝑥 are boundary 

points, where we switch the respective (𝛼, 𝛽) using (10) or 

(13). Therefore, each approximation region starts at 𝜃𝑠 and 

ends at 𝜃𝑒. The overall magnitude estimation procedure is 
specified in Algorithm 1. The number of approximation 
regions that directly affects the maximum approximation 
error should be specified at the beginning of the magnitude 
estimation algorithm. 

 

Algorithm 1. Computation of magnitude of complex 
number 𝑃 + 𝑗𝑄 

1. Determine of  𝑥 = max (|𝑃|, |𝑄|),  𝑦 = min (|𝑃|, |𝑄|) for   

the pair (𝑃, 𝑄) 

2. Calculate  𝑟 = 𝑦/𝑥 

3. Determine the proper (𝛼𝑖 , 𝛽𝑖) for i-th approximation 

region, based on  𝑟 

4. Compute magnitude value as  𝛼𝑖  𝑥 + 𝛽𝑖𝑦 

Example 1. We are going to calculate |𝑧| = √𝑃2 + 𝑄2 for 𝑃 =
2040 and 𝑄 = 1340 which, when calculated directly, gives 

the result |𝑧| = √20402 + 13402 = 2440.7376. We will use 

our approximation algorithm using four intervals. For r =
1340/2040 = 0.65, we have to apply third group of 

coefficients using (10), so |𝑧| = 0.9095 ∙   2040 + 0.4301 ∙
1340 = 2431.714. This gives us the relative error at the level 

(2431.71 − 2440.73)/2440.73 = −0.00369. 
 

Experimental results 
Using (10) and (13) the pairs of (𝛼, 𝛽) coefficients can be 

pre-calculated as shown in Table 1 and Table 2. When 
implementing the algorithm, these coefficients can be stored 
in an array. 
Table 1. Calculated values of (𝛼𝑖 , 𝛽𝑖), 𝑖 = 2,4,8 based on (10) 

Num. of 
regions 

Angle range 

)arctan(Q/P=  

α, β coefficients 

2 [0, π/8) α=1.0196 β= 0.1004 

 [π/8, π/4) α= 0.9035, β= 0.483 

4 [0,π/16) α= 1.0048, β=  0.0494 

[π/16,π/8) α=  0.9759, β= 0.2445 

[π/8,3π/16) α= 0.9095, β= 0.4301 

[3π/16,π/4] α= 0.8081, β= 0.5993 

8 [0,π/32) α= 1.0012, β= 0.0246 

[π/32,π/16) α= 0.994, β= 0.1226 

[π/16,3π/32) α= 0.9772, β= 0.2194 

[3π/32,π/8) α= 0.951, β= 0.3142 

[π/8,5π/32) α= 0.9156, β= 0.4059 

[5π/32,3π/16) α= 0.8714, β= 0.4936 

[3π/16,7π/32) α= 0.8188, β= 0.5767 

[7π/32,π/4] α= 0.7584, β= 0.6542 
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Table 2. Calculated values of (𝛼𝑖 , 𝛽𝑖), 𝑖 = 2,4,8 based on (13) 
Num. of 
regions 

Angle range 

)arctan(Q/P=  

α, β coefficients 

2 [0, π/8) α= 1.0, β= 0.0985 

 [π/8, π/4) α= 0.8862, β= 0.4737  

4 [0,π/16) α= 1.0, β= 0.0491 

[π/16,π/8) α= 0.9712, β= 0.2433 

[π/8,3π/16) α= 0.9051, β= 0.4281 

[3π/16,π/4] α= 0.8042, β= 0.5964  

8 [0,π/32) α= 1.0, β= 0.0245  

[π/32,π/16) α= 0.9928, β= 0.1224 

[π/16,3π/32) α= 0.976, β= 0.2192 

[3π/32,π/8) α= 0.9498, β= 0.3138  

[π/8,5π/32) α= 0.9145, β= 0.4054  

[5π/32,3π/16) α= 0.8703, β= 0.493  

[3π/16,7π/32) α= 0.8178, β= 0.576  

[7π/32,π/4] α= 0.7574, β= 0.6534 

 
Fig. 1. Error for first version of 𝛼, 𝛽 algorithm (10) 

 
Fig. 2. Error for second version of 𝛼, 𝛽 algorithm (13) 

 

 
Fig. 3. Square rooter architecture diagram 

In Fig. 1 and Fig. 2 the relative errors for selected number of 
regions for the first (10) and second (13) versions of 
algorithm are depicted. Using (13) the relative error is twice 
of that from (10). This is due to the approximation criterion, 
using (10) the computation formulas are much more 
complex, than in (13). When the simplicity is important (13) 
should be used and for better accuracy (10). 
 

Square rooter architecture 
In Fig. 3 square rooter architecture for 11-bit arguments 

is depicted. BA1 adder performs 𝑃 − 𝑄 subtraction using 
two’s complement. Its output carry controls MUX1 and MUX2 
multiplexers. If 𝑃 < 𝑄 then 𝐶𝑜𝑢𝑡 = 1 and 𝑥 = 𝑄, 𝑦 = 𝑃, else if 

𝑃 > 𝑄 then 𝐶𝑜𝑢𝑡 = 0 and 𝑥 = 𝑃, 𝑦 = 𝑄. Then using ROM1 

1/𝑥 is computed. In the next step the obtained inverse of 𝑥 is 

multiplied by 𝑦 to obtain the number of region. Once the 
region is known ROM2 and ROM3 multiply x and y by 𝛼, 𝛽 
respectively. Finally addition is performed by BA2 as in (3). 
 

Summary 
This paper is an extension of a previously presented work 

[9]. The new formulas for 𝛼, 𝛽 coefficients are shown for the 
error criterion used in [9]. Moreover, the new algorithm for 
computing 𝛼, 𝛽 using the new error criterion is shown that 

gives considerably simplified formulas for 𝛼, 𝛽. In the first 

approach the formulas for 𝛼, 𝛽 are more complex, but the 
error is smaller than in the second approach. The complexity 
of the formula may be important when the formula has to be 
computed in real-time. Moreover, a simple architecture of the 
square rooter is presented. 
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