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Abstract. The article describes a solution integrating machine learning algorithms and electrical impedance tomography-based wearable sensors. 
The main aim of the project was to develop a device that can assess the state of the urinary bladder in a non-invasive way. The research methods 
included XGBoost, Extremely Randomized Trees, Elastic Net, NNNET, and RPART Decision Tree. The obtained reconstructions of the simulated 
urinary bladder were presented, and a comparative analysis of the algorithms was performed. 

 
Streszczenie. W artykule opisano rozwiązanie integrujące algorytmy uczenia maszynowego i czujniki noszone na ciele oparte na elektrycznej 
tomografii impedancyjnej. Głównym celem projektu było opracowanie urządzenia, które może oceniać stan pęcherza moczowego w sposób 
nieinwazyjny. Metody badawcze obejmowały XGBoost, Extremely Randomized Trees, Elastic Net, NNNET i RPART Decision Tree. Przedstawiono 
uzyskane rekonstrukcje symulowanego pęcherza moczowego i przeprowadzono analizę porównawczą algorytmów. (Integracja algorytmów uczenia 
maszynowego z czujnikami noszonymi na ciele opartymi na elektrycznej tomografii impedancyjnej). 
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Introduction 
Electrical impedance tomography (EIT) is an innovative 

imaging technique that allows for non-invasive monitoring 
and assessment of the urinary bladder's function and 
structure. EIT involves placing electrodes around the 
examined area and measuring changes in electrical 
impedance, which are then processed into tomographic 
images. This method uses differences in the electrical 
conductivity of tissues, allowing for real-time visualization of 
changes [1-8]. 

In the urinary bladder, EIT can monitor its filling and 
emptying. This is particularly useful in diagnosing and 
treating urological disorders such as urinary incontinence, 
overactive bladder, or chronic urinary retention. EIT allows 
for tracking dynamic changes in bladder volume and 
assessing the function of the smooth muscles of the bladder 
wall, which can provide valuable diagnostic information. 

One of the main advantages of EIT is its non-
invasiveness and the lack of the need for contrast agents, 
which minimizes the risk of complications and makes it safe 
for patients, including children and pregnant women. In 
addition, EIT can be used multiple times, allowing for 
continuous monitoring of the patient's condition without 
exposing them to ionizing radiation. 

The article discusses a project that combines machine 
learning algorithms with wearable sensors based on 
electrical impedance tomography (EIT). The primary goal 
was to create a non-invasive device to evaluate the condition 
of the urinary bladder. The research compared several 
machine learning techniques, including XGBoost, Extremely 
Randomized Trees, Elastic Net, NNNET, and RPART 
Decision Tree [9-14]. 
 

The device 
The important aspect of the project is the wearability. It is 

designed as normal underwear (Fig. 1), in which the 
electrodes collecting the measurements are implemented 
(Fig. 2). Such a solution makes it much easier for a doctor to 
check the state of the urinary bladder, without the 
unnecessary stress of the patient.  It can be used to assess 
the effectiveness of surgical therapy, monitor patients after 
urological procedures, and search for early stages of bladder 
disease. The device enables more precise treatment 
decisions, significantly improving patient care quality [15-19]. 

 
Fig. 1. The designed device 
 

 
Fig. 2. The measurement module 
 

Methods and Reconstructions 
The XGBoost (Extreme Gradient Boosting) model is an 

advanced machine learning technique based on the gradient 
boosting algorithm. XGBoost is particularly valued for its 
efficiency and effectiveness in classification and regression 
tasks. The basic idea of gradient boosting is to build 
a predictive model in the form of an ensemble of weak 
models, usually decision trees, that are trained sequentially. 
Each successive tree tries to correct the errors made by the 
previous trees, leading to a gradual improvement in the 
model’s accuracy. XGBoost introduces several key 
improvements over traditional gradient boosting algorithms. 
First of all, XGBoost uses a technique called “shrinkage”, 
which involves scaling each tree's contribution, which helps 
avoid overfitting. Furthermore, XGBoost implements 
regularization, which penalizes the complexity of the model. 
Another significant feature of XGBoost is its ability to process 
data in parallel, which significantly speeds up the model 
training process. The advantages of the XGBoost model are 
numerous. First of all, XGBoost is extremely efficient and 
scalable, making it ideal for analyzing large data sets. 
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Thanks to advanced regularization techniques and overfitting 
control, XGBoost often achieves very high predictive 
accuracy. Furthermore, XGBoost is very flexible and can be 
applied to various types of problems, including classification, 
regression, and ranking. However, the XGBoost model also 
has its defects. One of the major drawbacks is its 
computational complexity. Training XGBoost models can be 
time-consuming and require significant computational 
resources, especially for large data sets. Furthermore, 
XGBoost can be challenging to tune because it has many 
hyperparameters that must be appropriately configured to 
achieve optimal performance. Another drawback is that 
XGBoost, like other gradient-boosting algorithms, can be 
prone to overfitting if proper regularization techniques are not 
applied. Fig. 3 and Fig. 4 present the reconstructions 
obtained using the XGBoost model. 

 
Fig. 3. Example comparison of the simulated urinary bladder and the 
reconstruction – XGBoost 
 

 
Fig. 4. Example comparison of the simulated urinary bladder and the 
reconstruction - XGBoost 
 

Extremely Randomized Trees is an advanced machine 
learning technique that, like Random Forest, relies on the 
construction of multiple decision trees to improve prediction 
accuracy. However, Extra Trees introduces an additional 
layer of randomness when building decision trees, which 
distinguishes it from traditional Random Forest algorithms. In 
the Extra Trees model, both the selection of features to split 
and the threshold values for these features are randomly 
selected, without optimizing the splitting criteria. This makes 
the structure of the trees more diverse, which can lead to 
better generalization of the model to new data. The basic 
architecture of Extra Trees consists of multiple decision trees 
that are trained on the entire dataset, but with different 
subsets of features. Each tree in the Extra Trees model is 
built independently, and the final prediction is obtained by 
aggregating the results of all trees, typically by majority voting 
in the case of classification or by average in the case of 
regression. The random selection of features and split 
thresholds makes the model less prone to overfitting and can 
better handle diverse data. Extra Trees are computationally 
very efficient, flexible and can be applied to various types of 
problems. One of the major drawbacks is that the random 
selection of features and split thresholds can lead to less 
interpretable decision trees, which can be problematic in 
applications requiring model explainability. Furthermore, 
although Extra Trees are less prone to overfitting, they may 
still require hyperparameter tuning to achieve optimal 
performance. Another disadvantage is that this model, like 
other ensemble algorithms, can be resource-intensive, 
especially for large data sets. In summary, the Extremely 

Randomized Trees model is a powerful data analysis tool 
with many performance, scalability, and generalization 
advantages. However, its random nature and resource 
requirements can be challenging in practical applications. 
Fig. 5 and Fig. 6 present the reconstructions obtained using 
the Extremely Randomized Trees model. 

 
Fig. 5. Example comparison of the simulated urinary bladder and the 
reconstruction – Extremely Randomized Trees 
 

 
Fig. 6. Example comparison of the simulated urinary bladder and the 
reconstruction – Extremely Randomized Trees 
 

Elastic Net is a regularized regression method that 
combines the L1 and L2 penalties used in the lasso and ridge 
methods. It is beneficial for high-dimensional data, where the 
number of variables is much larger than the number of 
observations. Elastic Net helps overcome the limitations of 
the lasso method, which can select only one variable from 
a group of highly correlated variables, ignoring the rest. 

The basic architecture of Elastic Net consists of adding 
two terms to the loss function: the L1 penalty (the absolute 
value of the coefficients) and the L2 penalty (the square of 
the coefficients). This allows the model to combine the 
advantages of both methods: lasso (variable selection) and 
ridge (coefficient stability). In practice, Elastic Net is often 
preferred over either the ridge or lasso methods alone, 
because it combines their advantages while minimizing their 
disadvantages. Combining the L1 and L2 penalties makes 
the model more flexible and can better handle high-
dimensional data.  

 
Fig. 7. Example comparison of the simulated urinary bladder and the 
reconstruction – Elastic Net 
 

One of the main drawbacks is that it can be 
computationally more resource-intensive, especially for very 
large datasets, due to the need to tune two hyperparameters: 
alpha and lambda. Selecting these parameters can be 
difficult and time-consuming, as there is no clear-cut method 
to optimize them. Furthermore, Elastic Net, like other 
regularization algorithms, can be less interpretable, which 
can be problematic in applications requiring model 
explainability. Fig. 7 and Fig. 8 present the reconstructions 
obtained using the Elastic Net model. 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025                                                                 93 

 
Fig. 8. Example comparison of the simulated urinary bladder and the 
reconstruction – Elastic Net 

 
The NNET model is an implementation of a neural 

network that allows for the creation of classification and 
regression models. Its architecture consists of an input layer, 
one hidden layer, and an output layer. Each neuron in the 
hidden and output layers calculates a value based on the 
weights assigned to the connections to the neurons in the 
previous layer and an activation function. The model is 
trained using a backpropagation algorithm that adjusts the 
connection weights to minimize the prediction error. 

The advantages of the NNET model include the ability to 
model complex nonlinear relationships between variables, 
which often leads to better prediction accuracy compared to 
traditional statistical models. The NNET model is also flexible 
and can be adapted to different types of problems, such as 
classification, regression, and time series analysis. 

One of the main disadvantages is that neural networks 
are often viewed as “black boxes.” This can be problematic 
in applications where model explainability is important. 
Furthermore, the NNET model can require large amounts of 
training data and computational resources, especially for 
more complex problems. Fig. 9 and Fig. 10 present the 
reconstructions obtained using the NNET model. 

 

 
Fig. 9. Example comparison of the simulated urinary bladder and the 
reconstruction – NNET 

 

 
Fig. 10. Example comparison of the simulated urinary bladder and 
the reconstruction – NNET 

 
RPART is a popular machine-learning technique used to 

build decision trees. This model works by iteratively splitting 
the data into smaller subsets, maximizing the homogeneity 
of the resulting groups. Unlike more advanced algorithms 
such as Extra Trees, RPART uses a deterministic approach 
for selecting features and splitting thresholds, which makes 
it more transparent and interpretable. Each node represents 
a decision based on one of the features, and each leaf 
represents the final outcome. This process is repeated until 
the maximum depth of the tree or another stopping criterion 

is reached, such as the minimum number of observations at 
a node. 

One of RPART's main advantages is its simplicity and 
interpretability. The model results are easy to understand 
and explain, which is especially important in applications 
requiring transparency. Furthermore, RPART is versatile and 
can be applied to both classification and regression 
problems. The model is also relatively fast and 
computationally efficient, making it suitable for analyzing 
large data sets. 

One of the main drawbacks is its susceptibility to 
overfitting, especially in the case of deep trees. To prevent 
this, tree pruning techniques are often used to remove less 
important branches. Furthermore, the deterministic approach 
to feature selection and splitting thresholds can lead to less 
diverse trees. It can then limit the model's ability to 
generalize. Compared to more advanced algorithms such as 
Extra Trees, RPART may also require more hyperparameter 
tuning to achieve optimal performance. Fig. 11 and Fig. 12 
present the reconstructions obtained using the RPART 
Decision Tree model. 
 

 
Fig. 11. Example comparison of the simulated urinary bladder and 
the reconstruction – RPART Decision Tree 

 

 
Fig. 12. Example comparison of the simulated urinary bladder and 
the reconstruction – RPART Decision Tree 

 
Results and Conclusions 

The algorithms were compared in terms of training time, 
prediction time, total time, mean absolute error (MAE), mean 
squared error (MSE), and root mean squared error (RMSE). 
The results are summarized in Tables 1 and 2. 

 
 

Table 1. The comparison of algorithms in terms of time 

Model Training 
Time [s] 

Prediction 
Time [s] 

Total 
time [s] 

XGBoost 92.42 11.55 103.97 

Extremely 
Randomized 

Trees 

283.39 110.97 394.38 

RPART 186.7 25.19 211.89 

Elastic Net 15.81 4.03 19.86 

NNET 531.39 9.09 540.5 

 
 

The Elastic Net model turned out to be the fastest one 
(total time 19.86 s). However, it is important to note that the 
prediction time is a more important indicator once the model 
is trained. The prediction time for the NNET neural network 
is also less than 10 seconds (9.09 s). 
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Table 2. The comparison of algorithms in terms of error 

Model MAE MSE RMSE 

XGBoost 0.06043 0.00458 0.06486 

Extremely 
Randomized 

Trees 

0.00248 0.00082 0.00911 

RPART 0.00383 0.00226 0.01462 

Elastic Net 0.01540 0.00461 0.02224 

NNET 0.00121 0.00043 0.00652 

 
The two methods with the smallest error values are 

Extremely Randomized Trees and NNET. However, the 
prediction time for Extremely Randomized Trees was the 
longest. These conclusions indicate that the NNET neural 
network is the appropriate algorithm for the discussed task. 

A solution integrating machine learning algorithms and 
electrical impedance tomography-based wearable sensors 
was presented. The device can assess the state of the 
urinary bladder in a non-invasive way. A comparative 
analysis of the algorithms was performed, which highlighted 
the NNET neural network as the optimal algorithm for the 
project. 
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