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Methods of classifying voltage surges  
using Deep Neural Networks 

 
 

Abstract. The paper focuses on exploring the potential application of neural networks for the classification of voltage surges compliance with the norm. 
Three potential neural network architectures were considered for the task - a convolutional neural network (further referred to as CNN), a model 
combining convolutional and LSTM layers (CNN+LSTM) and a transformer model. The best results were achieved by the simple transformer model 
(accuracy of 93% on the test dataset), followed by CNN+LSTM model (accuracy: 81%), and CNN (accuracy: 69%).  

 
Streszczenie. Artykuł koncentruje się na badaniu potencjalnego zastosowania sieci neuronowych do klasyfikacji zgodności udarów napięciowych z 
normą. Do tego zadania rozważono trzy potencjalne architektury sieci neuronowych - konwolucyjną sieć neuronową (CNN), model łączący warstwy 
konwolucyjne i LSTM (CNN+LSTM) oraz model transformatora. Najlepsze wyniki uzyskał prosty model transformatora (dokładność 93% w zestawie 
danych testowych), następnie model CNN+LSTM (dokładność: 81%) i CNN (dokładność: 69%) (Metody klasyfikacji udarów napięciowych za 
pomocą głębokich sieci neuronowych)  
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Introduction 
 Insulating systems of high-voltage electrical devices used 
in the power industry are exposed to various types 
of exposure during their operation. Overvoltages in the 
nature of lightning surges, resulting from the direct or indirect 
impact of atmospheric discharges - lightning, constitute 
a certain group of these exposures [1]. For this reason, 
the need to perform and design an acceptance tests 
of insulating systems of devices that may be subject to such 
impacts is justified. Insulating materials, insulators, insulating 
systems of switches, transformers, rotating machines, 
cables, etc. are tested. The aim is to verify the structural 
correctness of a given type of device or a specific product by 
checking the electrical strength of its insulating system with 
a test voltage of the appropriate shape and value according 
to standards [2, 3]. Based on the literature [4, 5, 6, 7], 
the authors decided to use artificial intelligence tools 
and algorithms to classify correct voltage surges. 
 The paper focuses on exploring the potential application 
of neural networks for the classification of voltage surges 
compliance with the norm. Therefore, the training dataset 
comprising 269 voltage surges - 134 correct ones and 135 
with incorrect parameters was generated. Three potential 
neural network architectures were considered for the task – 
a convolutional neural network (further referred to as CNN), 
a model combining convolutional and Long short-term 
memory (LSTM) layers (CNN+LSTM) and a Transformer 
model. The architecture of the  models is adjusted in such 
a way to mitigate the relatively small number of training data. 
The results show that the neural networks can be 
successfully applied to the task of voltage surge validation 
and allow for a quick assessment of whether the generated 
impulse meets the appropriate standard, with Transformer 
model achieving most promising results.   
 The paper is structured as follows: the second and third 
chapters are focused on the description of normalized 
voltage surge, and the procedure of training data generation. 
The fourth chapter describes performed experiments 
including, data preprocessing steps, the architecture of 
models used and hyper-parameters tuning as well as models 
training. Final chapters include discussion of the results, 
summary of our work and further possible directions of 
research. 
 

Lighting Voltage Surge Characteristic 
 The values of times T1 and T2 determine the shape of the 
impulse, which is designated by the symbol T1/T2.  
An example of a voltage impulse is presented in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Lightning impulse voltage course as a function of time [1]. 

 
 In most countries, a standard lightning surge is assumed 
to have a shape defined by the frontal duration (front time) 
of T1 = 1.2 µs and the time to half-value at the tail of the surge 
T2 = 50 µs. Therefore, a standard lightning impulse has the 
shape T1/T2 = 1.2/50. The permissible deviations of the front 
duration should not exceed ± 30\% of the standardized value 
T1 = 1.2 µs and the time to half-value ± 20% of the 
standardized value T2 = 50 µs. The selection of times T1 

and T2 was made based on the analysis of the shape 
of voltage waveforms induced in electrical systems by 
lightning discharges.  
 
Data acquisition setup 
 The authors conducted the research at the High Voltage 
Hall of the Warsaw University of Technology. The voltage 
surges were generated at a test stand (Figure 3). A detailed 
electrical diagram of the measuring system is shown in Fig. 
2. Voltage surges were recorded using the Dr. Strauss VFT 
Measuring System with capacitive voltage divider North Star 
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High Voltage VD-200. During the research, the authors are 
using known and simplified relationships [10]: 

(1)   𝑇1 = 3.25𝜏1 = 3.25𝐶2𝑅1 

(2)   𝑇2 = 0.7𝜏2 = 0.7𝐶1𝑅2 

where τ1 and τ2 means time constants, R1 is the sum of the 
Rf resistors, C2 means load capacitor, R2 corresponds to the 
discharge resistance Rd and C1 is the resultant capacitance 
of the series-connected generator capacitors. 
By appropriately modifying the resistance and capacitance 
of the system, the authors obtained various lightning surges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2. Electrical diagram of the voltage surge generation system, 
where: T – transformer, D – rectifier, Rc – charging resistor, SG – 
spark gap, C – discharge capacitor, C2 – load capacitor, Rf – front 
resistor, Rd – discharge resistor, Div - divider, VR - voltage regulator. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Lightning surge generator station view. 
 

 The research involved voltage signals without filtering 
and denoising. The registered signals consisted of 269 
measurements of voltage surges (134 - correct ones and 135 
incorrect). During the research, it was decided to add three 
groups of non-standardized voltage surges. The recorded 
incorrect signals were characterized by: time T1 out of range, 
time T2 out of range, and time T1 and T2 out of the range 
allowed by standards. 
 
Data pre-processing 
 The input dataset consisted of 269 measurements 
of voltage surges where each signal lasted by 200 µs and 

50848 measurement points were registered.  In order to 
enable effective models training data obtained in procedure 
described in previous section where subjected to 
the preprocessing procedure, consisting of the following 
steps: 

• First, signals were truncated after 40000 points, since 
further value of the signal was close to zero and 
negligible. 

• In the second step the data were resampled from 
40000 points to 1000 in order to mitigate the risk 
of over-fitting the model by training it with limited 
number of samples with high resolution. 

• Finally, signals where subjected to the z-score 
normalization, to obtain the mean of a signal equal to 
0 and a standard deviation of 1. Time series from both 
classes (correct one and not) were hard to 
distinguished visually. Performed transformation 
improved the differentiation between two classes 
of signals. Examples of surges after transformation 
are depicted in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Example time series a) after resampling to 1000 points b) after 
z-score normalization. Blue colour - samples in agreement with the 
standard, red colour - samples of non-standardized surges. 

 
Prior to the training, data were randomly splited into training 
and testing sets with 80:20 ratio. 
 
Models 
 We investigated 3 types of models often used in time-
series processing tasks [11, 12, 13]: convolutional model, 
further referred as CNN, model combining convolutional 
layers with Long Short-term Memory Layers (CNN+LSTM) 
and transformer based model. Due to small number of 
training data, in order to avoid over-fitting we constructed 
models with only few layers. 
 CNN model consists of 1 up to 3 one dimensional 
convolutional layers followed by Global Average Pooling 
layer and one Dense layer. Output layer uses softmax 
activation function.  
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 CNN+LSTM model includes initial one-dimensional 
convolutional layer, followed by maxpooling layer and 
dropout layer added, to increase generalization followed by 
bidirectional LSTM layer, dense layer with dropout and 
output dense layer with softmax activation function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
Fig. 5. Average training time of one epoch per model. Times were 
averaged with exclusion of the initial epoch which usually lasts 
longer. 

 
 Transformer model consists of: Input Layer which 
passes signal into the network, Token and Position 
Embedding layer which purpose is to embed signal into 
higher dimensional space as well as embed the position of 
the signal in the sequence to make the model aware of the 
data order. The following layer is Transformer layer which 
components are Multi-Head Attention block (Multiple heads 
allow to focus on different parts of sequence in parallel), Feed 
Forward Network followed by Normalization Layer and 
Dropout. In further step the output from the transformer block 
is flattened and passed to the Dense Layer with ReLU 
activation function. Finally, the output layer uses "sigmoid" 
function to obtain results. 
 
Implementation  
 All models where implemented with the use 
of TensorFlow Keras [8, 9] framework and trained in Google 
Colab environment. The authors' intention was to create 
models that could be trained and executed using freely 
available resources. This goal was successfully achieved: 
out of 3 models only Transformer one required training 
on Graphical Processing Unit in order to make it efficient. 
For that reason we used GPU T4 model with 16GB 
of memory, other models were trained on standard CPU 
environment. Average training times are presented in Fig 5. 
 The Transformer model deployed on the GPU had 
the fastest training time, averaging below 1 second per 
epoch. In contrast, training the same model on the CPU was 
approximately 87 times slower, making it inefficient for 
multiple experiments. The average training times per epoch 
for the CNN and LSTM+CNN models were 1.73 and 4.86 
seconds, respectively, and were therefore considered 
acceptable. 
 
Training parameters  
 In order to obtain most accurate results we performed 
hyper-parameter tuning for all of three models. In each case 
we have chosen random parameter search method with 20 
trials. The optimization goal was to maximize validation 
accuracy value (validation set consisted of randomly chosen 
20% of training data). Models were trained for maximum 42 

epochs with early stopping if validation loss did not decrease 
for 10 consecutive epochs. The batch size was fixed to the 
default value of 32 and as optimizer "Adam" was chosen in all 
cases. The parameters optimized for each models and their 
best combinations are summarized in Table 1. 
 
Table 1. Models hyper-parameters  

Hyperparameters Range Best value 

CNN 

No. of conv. layers 

filters no. (conv. layer 1) 

Kernel size (conv. layer 1) 

filters no.  (conv. layer 2) 

Kernel size (conv. layer 2) 

Dense units number 

Learning rate 

< 1, 3 > 

< 32, 128 > 

[ 3, 5, 7 ] 

< 32, 128 > 

[ 3, 5, 7 ] 

< 32, 128 > 

< 1e-4, 1e-2 > 

2 

64 

7 

128 

3 

64 

0.00636 

LSTM+CNN 

filters no. (conv. layer 1) 

Kernel size (conv. layer 1) 

Pool size 

Dropout rate (CNN) 

LSTM units number 

Dense units number 

Dropout rate (Dense) 

Learning rate 

< 32, 128 > 

< 2, 5 > 

< 2, 4 > 

< 0.1, 0.5 > 

< 32, 128> 

< 64, 256 > 

< 0.1, 0.5> 

<1e-4, 1e-2> 

80 

5 

3 

0,4 

96 

160 

0.1 

0.00168 

Transformer 

Dropout rate (CNN) 

LSTM units number 

Dense units number 

Dropout rate (Dense) 

Learning rate 

< 16, 64 > 

< 2, 8 > 

< 32, 128 > 

< 0.1, 0.5> 

<1e-4, 1e-2> 

48 

8 

32 

0.3 

0.00021 

 
Table 2. Models Metrics for Test Dataset  

Model Classa Acc. Prec. Recall F1 Support 

CNN 
0 

0.69 
0.72 0.74 0.74 31 

1 0.64 0.61 0.61 23 

CNN+LSTM 
0 

0.81 
0.78 0.94 0.85 31 

1 0.88 0.65 0.75 23 

Transformer 
0 

0.93 
0.94 0.94 0.94 31 

1 0.91 0.91 0.91 23 

a 0 – incorrect shape, 1 – correct shape, Acc. – accuracy, Prec. - 
precision 

 
 Accuracy obtained on validation set for models with best 
hyper-parameters was equal to 73% for CNN model, 84% for 
combined CNN+LSTM model and 97% for Transformer 
model. 
 After hyper-parameters tuning step, models where 
retrained with 5 best parameters combinations for each 
model type. Best models where evaluated on separate test 
data set. The evaluation results are presented in Table 2. 
 

Results discussion 
 The best results for both training and test data were 
obtained by Transformer model with F1 score equal to 94% 
for incorrect signal shape and 91% for correct one. The 
second best result with F1 score equal to 85% for "incorrect" 
class and 75% for "correct" one was obtained by CNN+LSTM 
model. However, it is worth noticing that whereas 

 



214                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 

in Transformer and CNN models the values of Precision 
and Recall are well balanced and does not diverge from one 
another for CNN+LSTM model the difference between both 
measures is significant and model tends to classify more 
samples as incorrect ones. Such behaviour might be caused 
by imbalanced nature of the test set (higher amount of 
incorrect samples). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 6. Accuracy value of best models of each type tracked during 
training; Solid line ("-") -- training data, dotted line ("..") -- validation 
data. 

 The results obtained for CNN model are worse than the 
ones produced by Transformer and CNN models. The 
reason of this might be simpler architecture of CNN model 
without the use of layers which keep information about time 
dependencies in signal such as LSTM layer or attention 
structure.  Lack of Dropout layer in aforementioned model 
might decrease generalization abilities. 
 Figures 6 and 7 show accuracy and loss traced during 
training of best models from each of three groups (CNN, 
LSTM+CNN, Transformer). We can observe that none of the 
models reached the limit of training epochs which was set to 
42. (Which means that validation loss was not decreasing for 
next 10 epochs). Transformer model was trained for the 
highest number of epochs. 

 
Fig. 7. Loss value of best models of each type tracked during 
training; Solid line ("-") -- training data, dotted line ("..") -- validation 
data. 
 

 During parameters tuning phase, authors focused on 
optimization of parameter values in fixed architecture 
(arbitrary written number and type of layers). Interesting 
direction of research might be also architecture optimization. 
Nevertheless, the results obtained by models, in particular 

Transformer one, with accuracy equals to 93%, show 
potential in using neural networks for voltage surges 
classification. 
 
Ease of Use 
 In the future, the authors plan to create a universal 
program for classifying various lightning surges and expand 
the database with additional samples. Part of the data will be 
created artificially in programs for simulating electrical 
circuits, such as Matlab Simulink or ETAP.  
 
Summary 
 The authors attempted to classify real lightning voltage 
surges. This paper presents three different algorithms used 
in the research as well as the classification results. The 
presented results allow to determine the possibility of 
classifying voltage surges. Despite the difficulty in 
distinguishing voltage surges meeting the requirements of 
the standard range, the Transformer model achieved 
satisfactory classification results. 
 The number of layers in all models was intentionally set 
to very small due to the small amount of data and hyper-
parameters optimization was performed to avoid over-fitting. 
In the next step, the authors plan to significantly increase the 
amount of training data both through measurements 
collected on different measurement systems and data 
generated artificially through circuit simulations. 
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