
20                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 101 NR 3/2025 

1. Karol BEDNARZ, 2. Bartłomiej GARDA 

AGH University of Krakow 
ORCID: 1. 0009-0007-6857-4851; 2. 0000-0001-6150-5617 

 
doi:10.15199/48.2025.03.05 

 

Memristor-based adaptive leaky integrate- 
and-fire neuron model: a simulation study 

 
 

Abstract. Due to the increasing demand for AI algorithms and the limitations of traditional von Neumann architectures, there is a need to develop new, 
more efficient architectures that operate in analogy to the human brain. In this study, an attempt was made to replicate the behaviour of a human 
neuron using memristor-based circuits. The correctness of the proposed solutions was verified through computer simulations. 
 
Streszczenie. Ze względu na rosnące zapotrzebowanie na algorytmy sztucznej inteligencji oraz ograniczenia wynikające z tradycyjnych architektur 
von Neumanna, istnieje konieczność opracowania nowych, bardziej efektywnych architektur, które będą działać w analogii do funkcjonowania 
ludzkiego mózgu. W niniejszej pracy podjęto próbę odwzorowania zachowania ludzkiego neuronu, wykorzystując układy oparte na memrystorach. 
Poprawność zaproponowanych rozwiązań została zweryfikowana za pomocą symulacji komputerowych. (Oparty na memrystorze model neuronu 
Adaptive Leaky Integrate-and-Fire: Badania symulacyjne) 
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Introduction 
Conventional computers, based on the von Neumann 

architecture, face limitations due to the separation of 
processing and memory units, resulting in the von Neumann 
bottleneck. To overcome this issue, neuromorphic computing 
has been proposed, promising faster computing speeds and 
more energy-efficient systems [1]. The leaky integrate-and-
fire (LIF) spiking model effectively mimics the firing patterns 
and information propagation of biological neurons, making it 
a valuable tool in neural networks, cognitive computing, and 
brain-inspired computing [2]. The Adaptive Leaky Integrate-
and-Fire model is superior to the standard LIF model due to 
its additional adaptation variable and exponential voltage 
dependence. This allows it to accurately emulate a wider 
range of neuronal firing patterns, such as adapting, bursting, 
delayed spike initiation, initial bursting, fast spiking, and 
regular spiking, providing a more comprehensive and flexible 
model for neuronal behaviour [3]. In this paper, an Adaptive 
LIF neuron model based on a memristor is proposed, which 
will simplify circuits and increase the density of packing them 
into artificial neural network circuits directly in the hardware. 
The controlled resistance of the internal memristor allows the 
neural function to be regulated by controlling the current 
leakage rate. 
 
Materials and Methods 

For the simulation of circuit, the LTSpice and Matlab 

simulation environments were utilized, employing the Runge- 
Kutta algorithm, specifically RK4, to solve differential 
equations. To model the dynamics of memristors, the mean 
metastable switch (MMS) model was applied, as it accurately 
replicates the dynamics of self-directed channel (SDC) 
memristors [4, 5, 6], as described in the publications [7, 8, 9]. 
The parameters of the MMS models were optimized by fitting 
them to real measurement data. 
 
LIF Neuron Model 

Hodgkin and Huxley proposed the membrane electrical 
circuit to mimic the electrophysiological behaviors of the 
biological cell membrane based on their experiments on the 
squid giant axon [1]. The LIF spiking neural model simplifies 
the complex Hodgkin-Huxley (HH) model, making it easier to 
construct large-scale neural networks while maintaining 
biological plausibility [10, 11]. The cell membrane, consisting 
of a lipid bilayer (capacitor) and ionic channels (resistor), can 
be modeled using an electrical circuit. The LIF model, which 

its electrical circuit is shown in the Figure 1, includes external 
stimulus 𝑖𝑖𝑛, membrane capacitance 𝐶𝑛, resistance 𝑅𝑛, 

resting voltage 𝑣rest, resistive voltage 𝑣𝑐 − 𝑣rest, and currents 

passing through the capacitor 𝑖𝑐  and resistor 𝑖𝑅 [12]. When 
the membrane potential 𝑣𝑐  exceeds the threshold voltage 𝑣th, 
then capacitor is discharged and output spike is generated. 
The operational principle of the Leaky Integrate-and-Fire 
(LIF) neuron and its fundamental assumptions are illustrated 
in Figure 2. The dynamic of the LIF neuron model is 
described by the state Eq. (1). 

 

 
Fig. 1. Electric circuit model for LIF neuron model 
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Fig. 2. The operational principle of the Leaky Integrate- 
and-Fire (LIF) neuron 
 

Adaptive LIF neuron model 
Described LIF model, which dynamics is described by 

single equation is, however, not sufficient to describe the 
variety of firing patterns that neurons exhibit in response to a 
step current. It doesn't put under consideration, its threshold 
adaptation based on the input constant current, and therefore 
spike generation (bursting) frequency [1,13], that could be 
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defined as: fs  =  
1

 ISI
 where 𝐼𝑆𝐼 is the inverse interspike 

interval ISI = Δ + τ𝑚 log (
𝑖in𝑅𝑛+𝑣rest

𝑖in𝑅𝑛+𝑣rest−𝑣𝑡ℎ
) where Δ is asymptote 

given by absolute refractory period which  is the interval of 
time during which a second action potential cannot be 
initiated [14]. The operational principle of the adaptability was 
shown in Figure 3. In the proposed solution, the voltage 
across the memristor is analogous to the membrane 
potential. The memristor-resistor configuration forms a 
dynamic voltage divider, which allows for the adaptation of 
the bursting frequency to high-frequency input signals. As the 
current through the memristor increases, the value of its 
internal state variable 𝑥𝑚 also increases, which subsequently 
decreases its resistance. This decrease in resistance leads 
to a reduction in the voltage across the memristor. Thus, 

assuming a constant threshold voltage  𝑣th, this mechanism 
facilitates the adaptation to the input signal. Over time, the 
residual voltage  𝑣rest causes a reset of the state variable 𝑥𝑚 
to zero. Hence, it was decided to propose a new memristor-
based adaptive LIF model based on the [15]. The proposed 
schematic diagram of the adaptive LIF neuron model is 
shown in Figure 4a and the proposal of the hardware 
implementation is shown in Figure 4b. The proposed 
hardware architecture of the analysed Adaptive Leaky 
Integrate-and-Fire (LIF) Model is based on a memristor and 
incorporates several key components. These include a 
differential amplifier, which is implemented using the 
operational amplifier OP482, and a Schmitt trigger 
comparator, which utilizes the comparator model AD856. 
The hysteresis loop of the Schmitt trigger comparator has 
been carefully adjusted to ensure that it deactivates the 
MOSFET responsible for discharging the capacitor at the 
lowest possible voltage levels. 

The dynamic of the proposed model is described by the 
system of algebraic-differential equations placed in Eq. (2). 
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Where 𝑥𝑚 represents the internal state variable of the 

memristor, 𝑖𝑚 denotes the current passing through the 

memristor, and 𝑅𝑚 is the memristor's resistance, which is a 
function of its internal state variable. The evolution of the 
internal state variable 𝑥𝑚 is governed by a dynamic function 

𝑓(𝑥𝑚, 𝑖𝑚), which encapsulates the relationship between the 
state variable and the current. 

 

 
Fig. 3. The operational principle of the Adaptive Leaky Integrate-and-
Fire (LIF) neuron 
 

In order to best represent the real physical memristors the 
mean metastable switch (MMS) memristor model was used 
in the simulations [16]. The parameters of this model were 

matched to the actual measurement data of SDC memristors 
through numerical optimization. 

The considered neuron models were implemented both 
in the Matlab environment, where the system of differential 

equations was solved using the Runge-Kutta method, 
specifically RK4, and in the LTSpice environment, where a 

circuit for possible physical implementation of the discussed 
neuron was proposed. Example simulation results are 
presented in Figure 5 and 6. 

 

 
(a) Proposed electrical circuit of Adaptive LIF neuron model 

 
(b) Proposed hardware implementation of Adaptive LIF neuron 

model 
Fig. 4. Proposed electrical schematics for the potential 
implementation of the Adaptive Leaky Integrate-and-Fire (LIF) 
Neuron. 
 

Results 
In this section, we present the findings derived from the 

simulations and experimental evaluations conducted on the 
proposed Adaptive Leaky Integrate-and-Fire (LIF) Model 
based on a memristor 

In Figure 5, sample simulation results for the memristor-
based Adaptive Leaky Integrate-and-Fire (ALIF) model are 
shown, which solve simple differential equations 
implemented in the Matlab environment. Figure 5a depicts 

the time evolution of the voltage across the memristor. As 
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predicted, during the initial moments of interaction with the 
forcing current, there were rapid voltage spikes, resulting in 
a high frequency of generated spikes. Subsequently, as the 
memristor transitioned into a low-resistance state, this 
frequency decreased. This behaviour demonstrates the 
adaptive nature of the neuron. Figure 5b shows the time 
evolution of the internal state variable of the memristor 𝑥𝑚, 

during the test. It can be observed that 𝑥𝑚 increases with the 
excitation, which in turn decreases the resistance of the 
memristor. This mechanism enables the memristor to adapt 
to high excitation levels. Figure 5c presents the voltage 
across the capacitor, 𝑣𝑐, which mimics the membrane 
potential. However, in this case, the capacitor primarily 
serves to store charge, while the membrane potential is 
simulated by v mem. It is noticeable that as the resistance 
decreases, a higher voltage is required to charge the 
capacitor, necessitating a greater amount of charge. 
 

 
(a) Time series of the voltage across memristor 

 

 
(b) Time series of internal state variable 𝑥𝑚 at all simulation time. 

 

 
(c) Time series of the voltage across capacitor. It simulates 

membrane potential 

 

 
(d) Time series of generated spikes. 

 
Fig. 5. The simulation results for the Adaptive Leaky Integrate-and-
Fire (ALIF) Neuron in the Matlab environment, by solving ODE 

equations. The input current 𝑖inwas a unipolar square wave with a 
frequency of 𝑓 = 1kHz, a duty cycle of 𝑇 =  50% , and amplitude 

𝐼amp = 1mA. 

 
Figure 6 shows the simulation of the proposed Adaptive 

Leaky Integrate-and-Fire (ALIF) circuit, which can be directly 
implemented in hardware. Figure 6a shows the time 
evolution of the voltage across the memristor, 𝑣𝑚𝑒𝑚. Here, 

the adaptation effect, similar to the one observed in Figure 
5a, is also noticeable, though not as pronounced. This is 
likely due to the damping effect of auxiliary components such 
as operational amplifiers and comparators. A similar situation 
is observed in Figure 6b, which shows the voltage across the 
capacitor. The neuron's adaptation is visible, but not as 
pronounced as in the previous example. It appears that the 
causes are similar, likely due to the damping effects of 
auxiliary components such as operational amplifiers and 
comparators. Figure 5d displays the generated spike signal 
as a digital signal. Compared to the previous case, this plot 
also does not clearly demonstrate the adaptive nature of the 
LIF neuron. Figure 6d shows the time evolution of the internal 
state variable of the memristor during the test. As predicted, 
throughout the test, the memristor tended towards a low-
resistance state 𝑅ON by increasing the value of the state 
variable. 
 

 
(a) Time series of the voltage across memristor 

 

 
(b) Time series of the voltage across capacitor. It simulates 

membrane potential 
 

 
(c) Time series of generated spikes at shorter time horizons to 

better show signal variability 
 

 
(d) Time series of internal state variable 𝑥𝑚 at all simulation time. 

 
Fig. 6. The simulation results for the hardware implementation of the 
Adaptive Leaky Integrate-and-Fire (ALIF) Neuron in the LTSpice 

environment. The input current 𝑖inwas a unipolar square wave with a 
frequency of 𝑓 = 1kHz, a duty cycle of 𝑇 =  50% , and amplitude 

𝐼amp = 1mA. 

 
Conclusions 

In summary, the proposed electronic circuit based on the 
Adaptive Leaky Integrate-and-Fire (LIF) model promises 
robust performance by more accurately mimicking the 
behavior of a human neuron compared to conventional LIF 
models. This is achieved through the unique nonlinear 
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characteristics of memristors, which confer the neuron with 
the ability to adapt to specific stimuli, a highly desirable trait 
for neuromorphic computing. Constructing such a circuit 
allows it to be utilized as one of the processing stages directly 
on edge devices, effectively creating a deep layer for analog 
signal processing. 

The Adaptive LIF model's primary advantage lies in its 
dynamic response to varying input signals. Memristors, with 
their state-dependent resistance, facilitate this adaptability by 
adjusting their resistance based on the history of voltage and 
current. This property enables the circuit to modify its 
behavior in real-time, providing a closer approximation to the 
biological processes occurring in human neurons. This 
adaptability is particularly beneficial for applications requiring 
real-time data processing and decision-making, such as 
robotics, autonomous systems, and advanced sensor 
networks. 

The proposed circuit's ability to adjust its response based 
on the input signal's frequency and amplitude underscores 
its potential for efficient energy usage. In neuromorphic 
systems, managing power consumption while maintaining 
high performance is crucial. The memristor-based Adaptive 
LIF model achieves this balance by reducing the frequency 
of spikes as the memristor transitions to a low-resistance 
state. This reduction in spiking frequency corresponds to 
lower energy expenditure, making the system more 
sustainable for long-term operations. 

Additionally, the inherent simplicity of the circuit design, 
relying on memristors, operational amplifiers, and 
comparators, makes it suitable for integration into existing 
hardware platforms. This compatibility ensures that the 
Adaptive LIF model can be adopted without extensive 
modifications to current systems, facilitating a smoother 
transition towards more advanced neuromorphic 
architectures. 

Future research will focus on several key areas to 
advance the development and application of this circuit. First, 
empirical validation through extensive testing will be 
essential to compare real-world performance with simulation 
outcomes. This will involve building and testing multiple 
prototypes to assess consistency and reliability across 
different scenarios. Additionally, exploring the integration of 
this circuit into larger neuromorphic networks will be crucial 
for understanding its scalability and interaction with other 
components. 

Future research will also focus on integrating neuron 
models with currently known machine learning methods. The 
tests will involve solving practical AI problems using hybrid 
models, where one of the processing stages will be the 
memristor-based LIF models. The accuracy of the results will 
be investigated and compared with classical machine 
learning methods. 

In conclusion, the development of the Adaptive LIF model 
based on memristors represents a significant step forward in 
neuromorphic engineering. By providing a more accurate 
emulation of neuronal behavior and offering adaptability to 
varying stimuli, this model holds promise for a wide range of 
applications in artificial intelligence and edge computing. The 
continued research and refinement of this technology will 
pave the way for the creation of more advanced and capable 
neuromorphic systems, bringing us closer to achieving brain-
like computation in hardware. 

Overall, the memristor-based Adaptive LIF model not 
only enhances the fidelity of neuromorphic circuits but also 
opens new avenues for energy-efficient and adaptive 
computation. As we move towards more complex and 
autonomous systems, the importance of such adaptive 

mechanisms cannot be overstated. This work lays the 
foundation for future advancements in neuromorphic 
computing, where the integration of biological principles into 
electronic systems will drive the next generation of intelligent 
devices. 
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