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Optimizing home energy balance with Bayesian models: 
predicting solar panel efficiency in variable weather conditions 

   

Optymalizacja bilansu energetycznego domu za pomocą modeli bayesowskich:  
Prognozowanie efektywności paneli słonecznych w zmiennych warunkach pogodowych 

 
Abstract: Photovoltaic (PV) technology is revolutionizing renewable energy by providing a sustainable and inexhaustible source of electricity. This 
paper explores Bayesian models for predicting home energy balance when using solar panels, with a focus on optimizing energy production under 
varying weather conditions in Poland. The research emphasizes the importance of personalized energy management solutions due to the high 
variability in household consumption patterns. Two distinct Bayesian models are developed to predict energy production and consumption, 
leveraging factors such as temperature, insulation, cloudiness, and day length. Data collected over five months from a specific region in Poland was 
used to validate these models. The results demonstrate the models’ effectiveness in capturing the variability in energy production and provide 
insights into optimizing the efficiency of PV systems. This study offers valuable guidelines for individuals considering investments in photovoltaic 
panels, highlighting potential profitability and efficiency improvements.  
 
Streszczenie: Technologia fotowoltaiczna (PV) rewolucjonizuje odnawialne źródła energii, zapewniając zrównoważone i niewyczerpane źródło 
energii elektrycznej. W niniejszym artykule zbadano modele bayesowskie służące do przewidywania bilansu energetycznego w domu podczas 
korzystania z paneli słonecznych, ze szczególnym uwzględnieniem optymalizacji produkcji energii w zmiennych warunkach pogodowych w Polsce. 
Badania podkreślają znaczenie spersonalizowanych rozwiązań w zakresie zarządzania energią ze względu na dużą zmienność wzorców zużycia 
energii w gospodarstwach domowych. Opracowano dwa odrębne modele bayesowskie w celu przewidywania produkcji i zużycia energii, 
wykorzystując takie czynniki jak temperatura, izolacja, zachmurzenie i długość dnia. Dane zebrane w ciągu pięciu miesięcy z określonego regionu w 
Polsce zostały wykorzystane do walidacji tych modeli. Wyniki pokazują skuteczność modeli w uchwyceniu zmienności produkcji energii i dostarczają 
spostrzeżeń na temat optymalizacji wydajności systemów PV. Niniejsze badanie oferuje cenne wskazówki dla osób rozważających inwestycje w 
panele fotowoltaiczne, podkreślając potencjalną rentowność i poprawę wydajności.  
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Introduction 
Photovoltaic (PV) technology is transforming the 

landscape of renewable energy, offering a clean, 
inexhaustible source of electricity. Solar energy systems 
provide substantial benefits such as reducing carbon 
footprints, enhancing energy security, and mitigating the 
volatility of energy prices. 

The adoption of PV installations enables households to 
stabilize their energy costs and generate their own 
electricity, leading to significant long-term savings [1]. In 
recent years, solar panels have been gaining increasing 
popularity, not only as photovoltaic farms but also among 
individual consumers investing in this type of energy 
production. A crucial aspect turns out to be the profitability 
of installing panels under the weather conditions prevailing 
in different areas of the world. The predictability of energy 
use in homes presents a complex challenge due to the high 
variability in consumption patterns across different 
households and types. Lachut, Banerjee, and Rollins [2] 
emphasize the necessity for personalized approaches in 
energy management systems. Their study highlights that 
generalized models are often inadequate due to significant 
variances in energy consumption behavior, which can be 
influenced by factors such as household size, occupancy 
patterns, and appliance usage. This variability underscores 
the need for tailored energy management solutions that can 
adapt to the unique characteristics of individual households. 

Nfaoui and El-Hami [3] delve into methods for extracting 
maximum energy from solar panels, focusing particularly on 
the importance of calculating the optimal angle for solar 
panels. Their research addresses the need to consider 
various environmental and physical factors to optimize 
energy production. The study underscores the significance 
of precise angle adjustments to ensure maximum solar 
irradiance capture, which is critical for enhancing the overall 
efficiency of PV systems. 

El Hammoumi et al. [4] provide a comprehensive 
overview of PV energy, from material selection to practical 
applications. Their work discusses advanced techniques 

such as solar trackers and floating solar panels, which are 
designed to maximize power output. This paper offers 
valuable insights into the latest innovations in PV 
technology aimed at optimizing energy production under 
various conditions, emphasizing the continuous evolution of 
methods to enhance PV system efficiency. 

Sampaio and González [5] offer a broad conceptual 
framework for understanding photovoltaic solar energy. 
Their highly cited work covers fundamental aspects of PV 
systems, including the principles of solar energy conversion 
and the various technologies employed. This foundational 
text serves as a critical resource for understanding the 
basic mechanisms and theoretical underpinnings of PV 
systems, providing a solid base for further exploration of 
optimization strategies. Fouad, Shihata, and Morgan [6] 
conduct an integrated review of factors affecting the 
performance of PV panels. They identify and analyze 
various parameters such as temperature, irradiance, and 
panel orientation that significantly impact energy production. 
This comprehensive review provides a detailed 
understanding of how these factors interact and influence 
the overall efficiency of PV systems, offering valuable 
guidelines for improving panel performance. 

Mattei et al. [7] propose a method for calculating the 
temperature of polycrystalline PV modules using an Energy 
balance approach. Their work, which has been widely cited, 
investigates the impact of meteorological parameters on PV 
module temperature and, consequently, on energy 
production. This study provides a practical method for 
estimating PV module performance under varying 
environmental conditions, contributing to more accurate 
predictions and better system designs. 

Despite the extensive research, several limitations 
remain. Most studies emphasize technical optimization and 

theoretical models without sufficiently addressing the 
practical integration of energy production with real-world 
consumption patterns. Additionally, while predictive models 
using various techniques have been proposed, there is a 
notable lack of research employing Bayesian models 
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specifically for home energy balance predictions in the 
context of PV systems. 

Bayesian models provide a powerful framework for 
managing uncertainty and incorporating prior knowledge, 
making them particularly suitable for predicting home 
energy balance. These models can synthesize diverse data 
sources, including historical energy production and 
consumption, weather forecasts, and other relevant 
variables, to deliver more precise and reliable predictions 
[8]. Despite their potential advantages, Bayesian methods 
remain underrepresented in studies focused on residential 
PV systems. 

Our research aims to fill these gaps by employing 
Bayesian models to forecast home energy balance for 
households equipped with solar panels in the Lublin 
Voivodeship of Poland. We collected comprehensive 
datasets, including daily energy production and 
consumption metrics from a residential PV installation, 
along with detailed local weather data. By integrating these 
datasets, we developed Bayesian predictive models that 
offer practical insights for households considering PV 
investments. This study not only advances the theoretical 
understanding of Bayesian applications in energy 
predictions but also provides actionable guidance for 
homeowners. The developed models enable potential 
investors to make informed decisions about the economic 
feasibility and effectiveness of PV installations tailored to 
their specific regional conditions. This localized approach 
ensures that our findings are relevant and beneficial for 
households in the Lublin Voivodeship and other regions 
with similar climatic characteristics. 

 
Case study 

Photovoltaics is an inexhaustible source of energy that 
doesn’t pollute the environment, is durable, and makes you 
independent from annual electricity price increases. This 
means that investing in a photovoltaic installation not only 
allows you to stabilize your energy expenses by generating 
your own electricity but also generates savings for decades. 

However, the production of electrical energy is 
influenced by many factors, so we decided to analyze their 
individual impact. Additionally, to make it more than just 
purely statistical data that may not mean much to people 
unfamiliar with the topic, we added data and energy 
consumption predictions for the same household for which 
the energy is being produced using solar panels. 

The whole problem initially involved gathering real data, 
which was possible thanks to having photovoltaic panels 
and a specialized application. The application showed how 
many kilowatt-hours were produced each day and how 
much was consumed by the household. Additionally, in 
specialized weather services, we found information 
regarding the parameters that have the greatest impact 
(according to sources) on solar energy production. In the 
case of consumption, these parameters are certainly not 
perfectly chosen, but as mentioned earlier, the main idea of 
the project was to predict production, while consumption is 
used to better illustrate the values. 

The created models and obtained results can help 
people considering photovoltaic panels in making decisions 
regarding investments. The project provides the opportunity 
to obtain at least partial answers to whether such an 
investment can be profitable under the conditions prevailing 
in Poland. It is worth noting that the data comes from the 
Lublin Voivodeship, and there may be slight differences 
between regions within the country. 

Dependencies between factors are visible on DAG 
diagram (see Fig. 1) for our project. 

 

 
Fig. 1. Directed Acyclic Graph (DAG) showing the relationships 
between factors influencing the prediction of energy production and 
consumption 

 

 
When it comes to confounders, the only case we have in 

our project, although difficult to categorize unambiguously 
(whether a fork or something), is the relationship between 
the variables "is_weekend" and "is_workingDay." 
Specifically, if one variable has a value of 1, the other is 0, 
and vice versa. 

These variables convey information about the type of 
day of the week. 

Another confounder that initially appeared in our project 
and can be seen in the DAG is "temperature". The type of 
this confounder is a "fork", which corresponds to omitted 
variable bias. Due to the high variability and inaccuracy of 
the data, we decided to split one model that predicted both 
energy consumption and production into two separate 
models, thus avoiding the problem. 

 
Methods 

Before using any methods, it is essential to have correct 
data tailored to the problem, thus data preprocessing was 
necessary. The data was obtained using the manufacturer’s 
photovoltaic panel application. The application tracked the 
production and consumption of electrical energy over a 
fivemonth period, from January to June, allowing for the 
consideration of different weather conditions in the data. 
Each row represents data from a single day and includes 
the following information: 

• Day of the week 
• Consumption (kWh) 
• Production (kWh) 
• Average temperature (

◦
C) 

• Average insolation (W/m
2
) 

• Average cloudiness (%) 
• Day length (h) 

The collected data is fully complete (no missing values). 
Additionally, it did not require many preprocessing steps. 
The only necessary step was encoding the day of the week. 
Two new dummy columns were created: "Weekend" and 
"Working_week," each containing binary information 
indicating whether it is currently a weekend or not. 

The next step in data processing was to divide them into 
separate DataFrames, where each DataFrame contains the 
data needed for a specific model.  

The last step involved data normalization, as the data 
contained values with different units. Normalization was 
performed by subtracting the mean and dividing by the 
standard deviation. 
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Bayesian statistics  
Bayesian statistics is an approach to data analysis 

based on Bayes’ theorem, where available knowledge 
about parameters in a statistical model is updated with the 
information in observed data. The background knowledge is 
expressed as a prior distribution and combined with 
observational data in the form of a likelihood function to 
determine the posterior distribution. The posterior can also 
be used for making predictions about future events. [9] 

One of the key advantages of Bayesian Statistics is its 
flexibility and robustness in dealing with complex models 
and small sample sizes. By incorporating prior information, 
Bayesian methods can yield more accurate and stable 
estimates, even when data are scarce. This is particularly 
useful in fields such as medicine, where prior clinical 
knowledge can be critical, or in environmental science, 
where observational data might be limited. 

Moreover, Bayesian approaches are inherently 
probabilistic, providing a complete distribution of possible 
parameter values rather than single-point estimates. This 
allows researchers to quantify uncertainty and make 
probabilistic statements about the parameters, which is 
often more informative for decision-making processes. The 
computational advancements in recent decades, particularly 
in Markov Chain Monte Carlo (MCMC) methods and 
variational inference, have significantly enhanced the 
feasibility of Bayesian methods, enabling the analysis of 
high-dimensional data and complex hierarchical models. 

 
Used models 

Before proceeding to create the models, we decided to 
analyze the collected data. 

 

 
Fig. 2. Scatter plots and histograms illustrating the distribution of 
individual factors affecting energy production. The scatter plots 
show points depicting the relationships between production and the 
factor, while the histograms present the empirical distribution. 

 
The charts ( Fig. 2 and Fig. 3) allowed us to observe 

certain linear relationships between predictors and 
production as well as consumption. Based on these 
observations, we deemed a linear model potentially suitable 
for this problem. 

The first model is a linear model with the mean 
calculated based on beta coefficients, actual predictor 
values, and the intercept alpha. Then, a normal distribution 
is used with the obtained mean and standard deviation in 
the form of a value drawn from an exponential distribution. 
The first production model includes the following predictors: 
insolation, cloudiness, temperature, and day length. These 
predictors were selected based on articles related to 
photovoltaics found on the internet. Model can be described 
as follows (1) - (8): 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Scatter plots and histograms illustrating the distribution of 
individual factors affecting energy consumption. The scatter plots 
show points depicting the relationships between consumption and 
the factor, while the histograms present the empirical distribution. 

 

(1)  α ∼ normal(16, 5) 

(2)  β1 ∼ normal(3, 0.3) 

(3)  β2 ∼ normal(5, 0.5) 
(4)  β3 ∼ normal(−1.75, 0.3) 

(5)  β4 ∼ normal(3, 0.4) 

(6)  σ ∼ exp(15) 

(7)  μi = α + Xi1 ∗ β1 + Xi2 ∗ β2 + Xi3 ∗ β3 + Xi4 ∗ β4 

(8)  yi ∼ normal(μi, σ), 
 

where α is the intercept, X is the matrix with input data 
(temperature, insolation, cloudiness and day length), β is 
the vector containing factor coefficients and σ is the 
standard deviation. 
 The second model, similar to the first one, differs in the 
number of predictors used, specifically considering 
insolation, cloudiness, and day length but not temperature. 
Due to that, equation (2) isn’t included and equation (7) is 
changing to (9). 
 
(9)  μi = α + Xi2 ∗ β2 + Xi3 ∗ β3 + Xi4 ∗ β4 
 
Based on observations, we deemed it worthwhile to check if 
temperature has an impact on energy production. Its 
equation is the same as (8), but the difference here is only 
in the vector β, because it is smaller and does not include 
temperature as a factor. 
 In an effort to present the overall energy data in a more 
accessible way and having data that allows us to somewhat 
predict energy consumption, we decided to create an 
experimental energy consumption model, which is 
described by equations (10) - (15) and (8). 
 

(10) α ∼ normal(11, 3) 

(11) β1 ∼ normal(1, 0.2) 
(12) β2 ∼ normal(−1, 0.2) 

(13) β3 ∼ normal(−1, 0.2) 

(14) σ ∼ exp(0.75) 

(15) μi = α + Xi1 ∗ β1 + Xi2 ∗ β2 + Xi3 ∗ β3 
 
This time matrixX contains other input data (weekend, 
working_week, temperature). First and second columns are 
dummies, relationship is shown at Fig. 1. 
 Expectations for this model were not high since the only 
available data that could be utilized were the day of the 
week and temperature. During data collection, we noticed 
that significantly higher consumption occurs on weekends 
(likely due to a higher presence of people in the household 
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and cleaning activities often performed on those days). 
Additionally, energy consumption is higher at lower 
temperatures (heating requirements). 
The selected priors for the models are the parameters of 
slope in the linear function - beta, the intercept - alpha, and 
a prior for the standard deviation - sigma. For the 
coefficients of the linear function, a normal distribution was 
chosen as the prior because we do not have any knowledge 
suggesting the use of a different distribution. As for the 
standard deviation parameter - sigma, we assumed an 
exponential distribution for it. 
For all models we selected specific mean and standard 
deviation values for the priors of the beta, alpha, and sigma 
parameters. These values are based on our current 
knowledge of the discussed domain and determine the 
impact of each predictor on the final outcome. 
 
STAN 
 STAN is a platform for statistical modeling and 
highperformance statistical computations. Thousands of 
users utilize it for statistical modeling, data analysis, and 
forecasting in the social, biological, and physical sciences, 
as well as in engineering and business. 
 Stan interfaces with the most popular data analysis 
languages (R, Python, shell, MATLAB, Julia, Stata) and 
runs on all major platforms (Linux, Mac, Windows). 
 Users specify log density functions in the Stan 
probabilistic programming language and then fit the models 
to data using: 

• full Bayesian statistical inference with MCMC 
sampling: NUTS-HMC 

• approximate Bayesian inference with variational 
inference: Pathfinder and ADVI 

• penalized maximum likelihood estimation with 
optimization 

 
Results 
 The actions taken to obtain the results are identical for 
each of the models used and are consistent with Bayesian 
statistics. We began generating results by compiling models 
based on our expert knowledge in the discussed topic, 
known as Prior Predictive Check. If positive feedback was 
received, meaning the quality of the obtained data was 
sufficient to describe real data, the next step was 
performed. The analysis referred to as posterior analysis is 
based on the available data and prior knowledge, and as a 
result, the parameters regarding the influence of individual 
factors on energy production from photovoltaic panels are 
updated and modified according to the model. 
 
 
Model results 
 
Model 1 
According to the assumptions, the first step is to generate 
data from the prior model. 
 From the Fig. 4, it can be inferred that the chosen prior 
values allow for generating values that describe the real 
data. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Chart for the first model comparing histograms of real data 
and data generated from the prior model for energy production. The 
model shows high consistency, the histograms are similar, and the 
structure of the actual data has been reproduced quite good. 
 

The samples generated from the prior in the model 
make sense in terms of the distribution values. To confirm 
this, we created scatter plots to better examine the 
generated values for each factor. 

 
 
 
 
 
 
 
 
 

Fig. 5. Scatter plots for the first model comparing real data and data 
generated from the prior model separately for each factor affecting 
the amount of energy produced from solar panels. The values of 
both types are consistent, especially in terms of data distribution, 
which is the most important aspect. 

 
Based on Fig. 4 and Fig. 5, we can state with great 

confidence that the chosen first prior model is correct due to 
the distribution of values. Therefore, using this model along 
with actual data, we can proceed to posterior analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Chart for the first model comparing histograms of real data 
and data generated from the posterior model for energy production. 
In terms of achieved values, the model is quite consistent; 
however, the distribution of generated data slightly differs from the 
irregular, hard-to-replicate distribution of real-world data. 

 



66                                                                                                         PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 4/2025 

From the histogram (Fig. 6), it can be concluded that the 
posterior model is able to describe the observed data. 
However, the model is not perfect as it may generate values 
that are too large or negative, which is physically unrealistic. 
The model did not have any constraints applied, which 
allowed for smooth sampling, but it affected the results 
(generated data). It is important to note that the model’s 
ability to describe the data should be interpreted with 
caution, considering the limitations and potential unrealistic 
values it may generate. 

 
 
 
 
 
 
 
 
 

Fig. 7. Scatter plots for the first model comparing real data and data 
generated from the posterior model separately for each factor 
affecting the amount of energy produced from solar panels. The 
values of both types are consistent, especially in terms of data 
distribution, which is the most important aspect. Compared to 
priors, the charts also show values that deviate more from the 
distribution, known as outliers. 

 
 From the scatter plots (Fig. 7), we can observe that the 
model is capable of generating realistic samples. In 
comparison to the prior model, it is able to generate values 
that deviate more from the norm. This suggests that the 
posterior model has learned from the data and can 
generate samples that capture the variability and outliers 
present in the observed data. 

The histograms (Fig. 8) show the distribution of values 
generated by the posterior model for α as the intercept and 
for the individual β components, illustrating their impact on 
the amount of energy produced. 

 

 
Fig. 8. Histograms for the first model showing the distribution of 
individual coefficients of the equation 8. The histograms created 
from the generated points confirm that the posterior distributions 
align with the initial assumptions. Posterior model parameter values 
are slightly shifted in contrast to our prior assumptions, so we can 
conclude that model learned on input data and corrected its 
parameter values. 

 
Model 2 

The steps performed are identical to Model 1. 
Similar to the first model, from the Fig. 9, it can be 

inferred that the chosen prior values also allow for 
generating values that describe the real data. Once again, 
to confirm this, we created scatter plots to better examine 
the generated values for each factor. 

Based this time on Fig. 9 and Fig. 10, we can state with 
great confidence that the chosen second prior model also is 
correct due to the distribution of values. Therefore, using 
this model along with actual data, we can proceed to 
posterior analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Chart for the second model comparing histograms of real 
data and data generated from the prior model for energy 
production. The data distribution allows us to consider the model as 
correct; however,it reflects real-world data less accurately than the 
prior of model 1. 
 
 

 
 
Fig. 10. Scatter plots for the second model comparing real data and 
data generated from the prior model separately for each factor 
affecting the amount of energy produced from solar panels. The 
values of both types are consistent, especially in terms of data 
distribution, which is the most important aspect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Chart for the second model comparing histograms of real 
data and data generated from the posterior model for energy 
production. The range of achieved values generated is larger (due 
to maximum values) than in the case of real-world data. 

 
Model 2, in comparison to model 1, still uses normal 

distributions. However, as seen in the plot (Fig. 11), the 
minimum values reached are close to zero. This is due to 
the application of the fmax function in the generated 
quantities. Unfortunately, there are also noticeable values 
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that are larger than the actual data, which may suggest that 
the temperature used in model 1 had an possitive influence 
on the prediction. 

This model generates data quite well, and it can be said 
that the values deviating from the norm are even better 
sampled than in the previous model. However, there are 
also many samples with values larger than expected, which 
is visible on Fig. 12. 

 

 
 

Fig. 12. Scatter plots for the second model comparing real data and 
data generated from the posterior model separately for each factor 
affecting the amount of energy produced from solar panels. The 
values of both types are consistent, especially in terms of data 
distribution, which is the most important aspect. Compared to 
priors, the charts also show values that deviate more from the 
distribution, known as outliers. 

 
 While the model captures the variability and outliers in 
the data, the issue of generating values larger than 
expected remains a concern. It is important to further 
evaluate and refine the model to address this discrepancy 
and ensure that the generated samples align more closely 
with the expected values. 

The histograms (Fig. 13) show the distribution of values 
generated by the posterior model for α as the intercept and 
for the individual β components, illustrating their impact on 
the amount of energy produced. 

 

 
 

Fig. 13. Histograms for the second model showing the distribution 
of individual coefficients of the equation 8. The histograms created 
from the generated points confirm that the posterior distributions 
align with the initial assumptions. Posterior model parameter values 
are slightly shifted in contrast to our prior assumptions, so we can 
conclude that model learned on input data and corrected its 
parameter values. 

 
Experimental model 

As described in section , we also decided to prepare an 
experimental model with low expected quality, but allowing 
everyone to get acquainted with the approximate scale 
between energy consumed and produced. Despite the 
different model, the actions performed will be the same as 
in previous models. 

From the Fig. 14, it can be inferred that the chosen prior 
values allow for generating values that describe the real 
data. The samples generated from the prior in the model 

perhaps do not reflect the data perfectly, but make sense in 
terms of the distribution values. To confirm this, we created 
scatter plots to better examine the generated values for 
each factor. 

 

 
 

Fig. 14. Chart for the experimental model comparing histograms of 
real data and data generated from the prior model for energy 
consumption. The model shows quite a high degree of consistency, 
and the histograms are similar; however, the bimodal structure of 
the actual data is not particularly visible. 

 
Based on Fig. 14 and Fig. 15, we can state with 

confidence that the chosen experimental prior model is 
quite correct due to the distribution of values. Therefore, 
using this model along with actual data, we can proceed to 
posterior analysis. 

 

 
Fig. 15. Scatter plots for the experimental model comparing real 
data and data generated from the prior model separately for each 
factor affecting the amount of energy consumed. The values of 
both types are consistent, especially in terms of data distribution, 
which is the most important aspect. 

 
From the histogram (Fig. 16), it can be concluded that, 

to our surprise, generated samples are clearly consistent 
with real data, so posterior model describes the data better 
than expected. 

From the scatter plots (Fig. 17), again we can see that 
model learned on the data and describes it pretty well. 
Additionally there is clear improvement over model based 
only on our prior assumptions. 

The histograms (Fig. 18) created from the generated 
points confirm that the posterior distributions align with the 
initial assumptions. 

Against our expectations, this model behaves quite 
good despite having some primitive predictors. 

 
Model comparison 

To compare the models we will use LOO and WAIC 
criteria. Both methods were utilized from the arviz library 
using the ’compare’ method. To familiarize yourself with this 
library and the meaning of each column visible in the 
DataFrames below, please see [13]. 
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Fig. 16. Chart for the experimental model comparing histograms of 
real data and data generated from the posterior model for energy 
consumption. The model shows high consistency, the histograms 
are similar, and in comparison to the prior, the bimodal structure of 
the actual data has been reproduced. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Scatter plots for the experimental model comparing real 
data and data generated from the posterior model separately for 
each factor affecting the amount of energy consumed. The values 
of both types are consistent, especially in terms of data distribution, 
which is the most important aspect. Compared to priors, the charts 
also show values that deviate more from the distribution, known as 
outliers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. Histograms for the experimental model showing the 
distribution of individual coefficients of the equation 8. The 
histograms created from the generated points confirm that the 
posterior distributions align with the initial assumptions. Posterior 
model parameter values are slightly shifted in contrast to our prior 
assumptions, so we can conclude that model learned on input data 
and corrected its parameter values. 

LOO Compare 
Computes Pareto-smoothed importance sampling leave-

one-out cross-validation (PSIS-LOO-CV). 
 

 
 
Fig. 19. A plot on a negatively logarithmic scale illustrating the 
comparison of models using the LOO criterion. According to [13], 
for this scale, smaller values indicate higher out-of-sample 
predictive fit ("better" model). 

 
Estimates the expected log pointwise predictive density 

(elpd) using Pareto-smoothed importance sampling leave-
one-out cross-validation (PSIS-LOO-CV) [10] [11]. 

 
 rank loo p_loo d_loo weight se dse 

model1 0 431.95 5.22 0.00 0.83 12.57 0.00 
model2 1 447.92 4.96 15.97 0.17 14.15 7.45 

 
 
WAIC Compare 
Computes the widely applicable information criterion. 
 Estimates the expected log pointwise predictive density 
(elpd) using WAIC. [10] [12] 
 
 rank waic p_waic d_waic weight se dse 

model1 0 431.94 5.22 0.00 0.83 12.57 0.00 
model2 1 447.91 4.95 15.96 0.17 14.15 7.46 

 
 Taking into account the individual results and charts for 
Model 1 and Model 2, as well as considering the 
parameters for comparing these models, we can conclude 
that Model 1, which includes more predictors (including 
temperature), is better and more accurately reflects the real 
data. Thus, we agree with the ranking of models presented 
by the LOO and WAIC criteria. 
 We believe that the first model is superior because 
temperature does have an impact on predicting data related 
to the production of energy from photovoltaic panels. Our 
hypothesis was whether the temperatures reached in 
Poland are high enough to influence the panel’s efficiency. 
As the comparison of the models has shown, the 
hypothesis turned out to be true. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20. A plot on a negatively logarithmic scale illustrating the 
comparison of models using the WAIC criterion. According to [13], 
for this scale, smaller values indicate higher out-of-sample 
predictive fit ("better" model). 
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Discussion & Conclusions 
 To sum up, both models reasonably capture the 
problem of energy production from photovoltaic panels. 
However, the main issue lies in the generation of negative 
values in the better-performing model. This issue can 
potentially be addressed by using different distributions or 
applying constraints to the parameters. 
 We created plots (Fig. 21, Fig. 22, Fig. 23) of generated 
values for specific input data. We plotted histograms of 
values for one day in every month of our data, so we could 
see the influence of predictors on output. As we can see 
generated data is overall consistent with real values. 
 In summary, with the help of the collected data and 
expert knowledge on the topic, prior and posterior models 
were created. Based on these models, an analysis of the 
prediction of energy production and consumption from solar 
panels, as well as the significance of the influencing factors, 
was conducted. The accuracy of the models was supported 
by the presented charts, and the obtained results largely 
align with the initial assumptions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21. Histograms for the first model showing the distribution of 
energy production for one day in every month along with overlaid 
real and analysis-generated values. These values generally 
overlap. 
 
The advantages of the implemented models, as well as the 
overall topic being discussed, undoubtedly include the 
personally collected real-world data from our own source. 
Besides the obvious benefit of the uniqueness of this data, 
it is also very useful to have the ability to continuously add 
new values, which likely improves the quality of the models.  
Another advantage is the simple and clear way of 
presenting data on readable charts. In addition to the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 22. Histograms for the second model showing the distribution 
of energy production for one day in every month along with overlaid 
real and analysis-generated values. These values generally 
overlap. 

distributions and values of the predicted data, every 
possible factor affecting the results can be thoroughly 
examined. 
 On the other hand, the limitations we encountered 
include problems with finding comprehensive weather data 
presented in an accessible manner, which necessitated 
appropriate processing of such data for its subsequent use. 
This required a significant amount of work and can be 
somewhat discouraging, thus limiting further exploration of 
the topic. It is also worth mentioning that the collected data 
comes solely from a single set of solar panels, and 
therefore lacks diversity in terms of types and parameters of 
the devices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23. Histograms for the experimental model showing the 
distribution of energy consumption for one day in every month 
along with overlaid real and analysis-generated values. These 
values generally overlap. 
 

 Improving the models to prevent the generation of 
negative values would be an important step in enhancing 
their accuracy and ensuring the generated samples align 
more closely with the expected values. Exploring alternative 
distributions or constraints for the parameters could 
potentially help mitigate this problem and further improve 
the models’ performance. 
 Another potential direction for the development of the 
discussed topic is to obtain data from other solar panels, 
thereby adding additional factors such as panel power or tilt 
angle relative to the surface. This is an appealing prospect, 
which would allow for much more detailed advice for people 
interested in installing such devices in their households. 
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