
98                                                                                                       PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025 

1. Radosław WAJMAN, 2. Robert BANASIAK, 3. Maciej SPUTOWSKI, 4. Volodymyr MOSOROV 

ORCID: 1. 0000-0002-6372-5960; 2. 0000-0002-1234-4949; 3. Student; 4. 0000-0001-6016-8671 
 

DOI: 10.15199/48.2025.06.17 
 

Supervised learning for lower urinary tract identification  
with limited and imbalanced training data 

 

Uczenie nadzorowane do identyfikacji dolnych dróg moczowych przy użyciu ograniczonych i 
niezrównoważonych danych treningowych 

 
 

Abstract. In recent years, the advantages of AI in data processing and analysis have become increasingly evident in the medical field. There has 
been a rapid growth in the application of AI in clinical medicine, including its use in urinary system disease detection. AI offers the capability to 
process and utilize diagnostic information, presenting new opportunities for precise and individualized treatment while promoting non-invasive 
diagnostic and therapeutic approaches. This paper introduces an original approach to addressing the supervised learning problem in convolutional 
neural network (CNN) models for lower urinary tract identification when confronted with a scarce and imbalanced training dataset. The proposed 
solution involves significantly expanding the diagnostic urinary bladder dataset by increasing the number of samples through various augmentation 
strategies. However, this approach also intensifies the computational complexity of AI training, rendering it infeasible to load all training datasets into 
memory simultaneously. To overcome this challenge, a distributed computing approach has been developed, incorporating dynamic loading of 
training data alongside programming-level memory optimization.  

 
Streszczenie. W ostatnich latach zalety sztucznej inteligencji (AI) w przetwarzaniu danych i diagnostyce medycznej stały się coraz bardziej 
widoczne. Wpływ na to mają postępy w technologii komputerowej i integracja wielu dyscyplin. Warto zauważyć, że nastąpił szybki wzrost 
zastosowań AI w medycynie klinicznej, w tym jej wykorzystania w technologiach wykrywania chorób układu moczowego. AI oferuje możliwość 
przetwarzania informacji diagnostycznych, co stwarza nowe możliwości precyzyjnego, spersonalizowanego leczenia, jednocześnie promując 
nieinwazyjne podejścia diagnostyczne. W niniejszym artykule przedstawiono oryginalne podejście do rozwiązania problemu uczenia nadzorowanego 
w modelach sieci neuronowych splotowych (CNN) do identyfikacji dolnych dróg moczowych w przypadku ograniczonego i niezrównoważonego 
zestawu danych treningowych. Proponowane rozwiązanie obejmuje znaczne rozszerzenie zestawu danych diagnostycznych dotyczących pęcherza 
moczowego poprzez zwiększenie liczby próbek za pomocą różnych strategii. Jednak podejście to zwiększa również złożoność obliczeniową treningu 
AI, co sprawia, że niewykonalne jest jednoczesne załadowanie wszystkich zestawów danych treningowych do pamięci. Aby przezwyciężyć to 
wyzwanie, opracowano podejście rozproszonego przetwarzania, obejmujące dynamiczne ładowanie danych wraz z optymalizacją pamięci. 
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1. Introduction 
Functional urinary tract disorders are a common issue in 

the human population. Urinary system defects are often 
asymptomatic; therefore, regular monitoring of disease 
progression is essential to determine whether conservative 
treatment is sufficient or if surgical intervention is required. 
Consequently, performing magnetic resonance imaging 
(MRI) or computed tomography (CT) is necessary for 
accurate diagnosis. Lower urinary tract diseases 
encompass both anatomical abnormalities and functional 
disorders. Voiding cystourethrography (VCUG) is 
considered the "gold standard" for anatomical evaluation of 
the bladder and urethra, while urodynamic examination is 
employed to diagnose urinary tract dysfunctions. However, 
both diagnostic methods are invasive and frequently 
challenging, particularly due to the lack of cooperation from 
paediatric patients during the procedures. When repeat 
testing is required, children are exposed to ionising 
radiation (VCUG), an increased risk of urinary tract 
infections, and potential damage to the lower urinary tract 
caused by catheter insertion. 

Although urinary system diagnostic tests are generally 
well tolerated by adults, they can be difficult to be 
performed in children. Physicians must carefully assess the 
necessity of repeating these tests to monitor disease 
progression. Consequently, there is a pressing need to 
develop new, less invasive diagnostic methods to enhance 
understanding of urinary tract diseases in paediatric 
patients. 

The absence of non-invasive diagnostic techniques and 
the lack of a comprehensive analysis of the urinary tract 
significantly reduce the likelihood of accurate diagnosis and 
effective treatment. Current measurement methods yield 

unreliable results. The integration of PET/CT and PET/MRI 
with various radiopharmaceuticals presents a promising 
approach for characterising the urinary tract. PET/MRI, in 
particular, holds significant future potential due to its 
superior soft tissue contrast, which may improve urinary 
tract diagnosis. However, at present, the sensitivity of 
PET/MRI remains insufficient for the diagnosis of urinary 
diseases. 

In summary, PET/CT and PET/MRI represent promising 
imaging modalities in urinary tract diagnostics, offering 
greater accuracy than conventional CT. Future clinical trials 
involving novel radiopharmaceuticals and machine-learning-
driven PET technologies have the potential to advance 
early disease detection, staging, monitoring, and precision 
medicine approaches. In recent years, artificial intelligence 
(AI) has been widely applied to data processing and model 
analysis, including in the medical field. John McCarthy first 
proposed AI at the Dartmouth Conference in 1956 in New 
Hampshire, introducing it as a technological science 
dedicated to researching and developing theories and 
methods for intelligent systems. AI enables computers to 
simulate human behaviour and extend human capabilities 
beyond direct instructions. The application of AI in medicine 
has progressively deepened and broadened [1], particularly 
with the rapid development of clinical medicine intelligent 
decision-making. One of its key advantages is the ability to 
enhance diagnostic accuracy and efficiency based on 
medical data. Significant efforts have been made to address 
challenges in medical image analysis, including organ 
detection [2], segmentation, and the identification of 
disorders [3], [4] and diseases [5], [6] using AI. Urinary tract 
diagnostics also benefit from these advancements in clinical 
decision-making. 
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The integration of machine learning (ML), particularly 
supervised learning, into urinary tract diagnostics 
represents a transformative step towards more reliable and 
less invasive diagnostic methods. Supervised learning has 
demonstrated a remarkable efficacy in medical image 
segmentation, facilitating organ and pathology detection. 
However, a major limitation in its application to lower urinary 
tract (LUT) identification arises from the scarcity and 
imbalance of annotated training data. In medical imaging, 
obtaining pixel-wise annotations requires expert knowledge, 
making the process both time-consuming and costly [7]. 
Consequently, models trained on small, imbalanced 
datasets often suffer from overfitting, leading to poor 
generalisation on unseen data [8]. 

To mitigate the impact of data scarcity, various 
techniques have been proposed, including semi-supervised 
learning, data augmentation, and contrastive learning. 
Semi-supervised methods leverage unlabelled data to 
improve segmentation accuracy. Recent advancements, 
such as Dual-debiased Heterogeneous Co-training (DHC), 
utilise pseudo-labels to guide model learning while 
addressing class imbalance [8]. However, despite its 
advantages, DHC heavily relies on the quality of pseudo-
labels, which may introduce errors when generated from 
small or noisy datasets. Furthermore, its dependence on 
distribution-aware debiased weighting assumes a relatively 
stable class distribution, making it less effective in highly 
heterogeneous datasets. These limitations hinder its 
scalability across diverse medical imaging tasks and 
necessitate refinements in pseudo-label verification and 
bias mitigation strategies. Similarly, Multi-Scale Cross 
Contrastive Learning (MCSC) enhances the segmentation 
of small or infrequent anatomical structures by enforcing 
feature consistency across different scales [9]. While this 
method improves robustness through multi-scale 
representations, it presents challenges. The reliance on 
contrastive learning requires large-scale training to 
effectively capture meaningful inter-slice relationships, 
which is impractical for highly imbalanced medical datasets. 
Additionally, the model’s performance deteriorates when 
class distributions are significantly skewed, favouring 
dominant classes while underrepresenting rare pathological 
features. Addressing these issues requires tailored 
sampling strategies and adaptive weighting mechanisms to 
ensure fair learning across all anatomical structures. 

One primary area of focus is improving data 
augmentation techniques. Traditional augmentation 
methods, such as affine transformations and intensity 
perturbations, often fail in MRI imaging due to the strict 
spatial constraints of LUT scans. Task-driven data 
augmentation techniques, which generate synthetic 
intensity and shape variations tailored for medical images, 
have shown promise in overcoming these limitations [10]. 
Additionally, self-supervised contrastive learning can 
improve segmentation by ensuring robust feature 
representation, particularly in low-data regimes [11]. 

Overfitting remains a persistent issue due to the limited 
dataset size. Regularization techniques such as dropout 
and weight decay are integrated with self-supervised 
pretraining to mitigate this. Self-supervised learning (SSL) 
enables models to learn high-level feature representations 
from unlabelled MRI scans, enhancing their ability to 
generalise on small, annotated datasets. Furthermore, 
curriculum learning strategies, wherein networks first learn 
simpler segmentation tasks before progressively addressing 
complex structures, can enhance model stability and reduce 
overfitting [12]. However, while curriculum learning 
improves convergence, it may introduce biases by 
prioritising simpler tasks, potentially leading to suboptimal 

performance on complex anatomical structures. 
Additionally, the reliance on predefined task complexity 
metrics may limit the adaptability of this approach in highly 
heterogeneous datasets. Enhancing robustness through 
domain-specific priors is another critical aspect. Rather than 
relying solely on large-scale supervised learning, integrating 
anatomical priors via transformer-based architectures and 
hybrid CNN-transformer models can improve segmentation 
accuracy [13]. While these architectures offer superior 
spatial attention mechanisms, their increased complexity 
demands significantly greater computational resources, 
which may not be feasible in real-world clinical applications. 
Additionally, transformers are highly data-dependent, and 
their performance tends to degrade in low-data scenarios, 
making them less effective when only limited annotated MRI 
scans are available. 

The integration of supervised learning with advanced 
augmentation techniques presents a viable pathway for 
improving LUT identification despite data constraints. In this 
study, as a part of the research project [14]–[16], the 
authors faced the challenge of training a neural network 
model to recognise lower urinary tract organs using an 
exceptionally small number of MRI source images to 
construct a meaningful training set. In such cases, data 
augmentation techniques are typically employed to enhance 
model performance. However, the unique characteristics of 
MRI imaging introduced additional constraints. MRI scans 
centre the patient’s body in the image, permitting minimal 
spatial transformations, with rotation tolerances restricted to 
no more than two degrees in any direction. Additionally, the 
source dataset exhibited irregularities in sex, pathological 
conditions, and resolution, which, under normal 
circumstances (i.e., with a sufficiently large dataset), could 
be advantageous. Despite these challenges, the conducted 
research and applied methodologies demonstrated the 
feasibility of developing an adaptive neural network model 
capable of detecting lower urinary tract organs. 

The research findings and subsequent discussion 
addressed the following research questions: 
1. What impact do data augmentation techniques have on 

improving the generalisation of neural networks in 
lower urinary tract organ segmentation? 

2. What strategies can mitigate overfitting when training 
deep learning models with small and highly 
heterogeneous datasets? 

This paper is structured as follows. Section 2 defines the 
characteristics of the training data and outlines the data 
preparation procedure. Section 3 details the AI model 
designs and the implemented algorithm optimisation and 
parallelisation mechanisms. Section 4 presents the 
conducted experiments and discusses the obtained results. 
Finally, the last section provides a summary of the study’s 
conclusions. 

 
2. Methods for Processing and Organizing Training 
Data 

This chapter outlines the medical source data's origin, 
format, and specifications. The following subsections detail 
the methods used for selecting and preparing the training 
dataset. 

 
2.1. Data description and selection 

The medical dataset used in this study was both 
imbalanced and limited. It was provided in the form of 51 
DICOM files containing MRI (Magnetic Resonance Imaging) 
scan results of the lower abdomen from male and female 
patients of various ages, including children. The images 
exhibited significant diversity, having been acquired through 
different imaging techniques, such as T2W TSE (T2-
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weighted Turbo Spin Echo) and mDixon (point Dixon). 
Additionally, the images varied in scale, size, and 
anatomical positioning. 

It is important to note that DICOM images differ from 
standard image formats. In these files, pixel values occupy 
16 bits of memory, of which only 12 bits are utilized for data 
representation. Consequently, the pixel intensity values 
range from 0 to 4095, as opposed to the conventional 0 to 
255. Moreover, all images contained only a single channel. 

Many of the images were deemed unsuitable for training 
purposes. Some were of poor quality, while others were 
excessively distinct from the majority of the dataset. 
Additionally, certain images did not contain the bladder at 
all. Ultimately, only 19 images were selected as viable for 
use in the neural network training process. 

 
2.2. Data annotation 

Supervised neural network training requires each image 
to be associated with a corresponding ground truth—an 
expected output in the form of a segmentation mask. This 
mask consists exclusively of pixels assigned to a value of 
either 1 or 0, where the former represents the bladder 
region and the latter denotes the background. 

To generate these masks, a clustering process was 
applied to differentiate the bladder from surrounding 
anatomical structures. The k-means algorithm [17] was 
selected for this task due to its computational efficiency and 
adaptability, as the number of clusters (k) does not need to 
be predefined but can instead be determined empirically. 
Although the clustering process was applied differently to 
each image, the optimal k value was consistently found to 
lie between 6 and 10. 

Following clustering, only one cluster within the 
segmented image contained the bladder. This cluster was 
extracted for further processing. A manual annotation 
process was performed in the next step to ensure accurate 
segmentation. A shape was manually placed around the 
bladder to encompass the entire organ. For this purpose, a 
dedicated Picking Tool was developed, providing a 
graphical user interface with functionalities designed to 
enhance the visibility and annotation of the bladder within 
the image. 

Finally, the segmentation mask was generated as a 
blank image, in which the region corresponding to the 
bladder was filled with pixels assigned a value of 1, while all 
other pixels remained 0. This annotation process was 
repeated for every image included in the training dataset. A 

visual representation of the workflow for this procedure is 
shown in Figure 1. 

 
2.3. Data augmentation 

Given the minimal number of available samples, it was 
necessary to augment the dataset extensively. Each image 
was subjected to every possible combination of the 
following operations and their respective parameters: 

• Translation along the x and y axes: [-4, 0, 4] pixels, 

• Rotation along the x, y, and z axes:  
[-3, 0, 3] degrees, 

• Scaling: [0.95, 1.0, 1.05], 

• Intensity adjustment: [0.9, 1.0, 1.1]. 
Additionally, random noise was added to each 

augmented image. The noise values were sampled from a 
normal distribution with a mean of 0.0 and a standard 
deviation of 10.0. All resulting samples were normalised 
and reshaped to a uniform size of (256, 256, 96), as 
required by the network. These dimensions were selected 
because they closely approximate the dataset’s average 
dimensions (330, 330, 134) and can be repeatedly divided 
by two without remainder. This property eliminates the need 
for cropping or padding during downsampling and 
upsampling. 

The corresponding segmentation masks were 
augmented alongside their respective images. However, 
they were only subjected to translations, rotations, and 
scaling, as modifying voxel values in binary masks would be 
redundant. 

The augmented dataset was systematically stored on a 
hard drive. Augmenting each image generated 2,187 new 
samples, increasing the total dataset size to 41,553 images. 
These images and their associated masks occupied 
approximately 1.8 TB of disk space. 

 
3. Training and Optimizing CNN Models: Methods and 
Challenges 

The sheer size of the augmented dataset made it 
impractical to load into memory in its entirety. Instead, 
samples were dynamically loaded during training. Initially, 
the dataset was represented as a list of filenames, which 
was then randomised and split into training, validation, and 
test subsets using the standard 80/20 split, with validation 
and test sets each receiving 10% of the total samples. For 
each subset, an input pipeline was constructed, consisting 
of the following sequential stages: file listing → shuffling → 
transformation (file loading) → batching → prefetching. 

 

Fig. 1. Procedure developed for training dataset preparation 
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The first step in the pipeline involves shuffling the 
dataset. Although the data was already randomised before 
the split, additional shuffling was necessary to ensure 
variability after each epoch. 

The transformation step replaces filenames with their 
corresponding loaded images and masks. Since 3D 
convolutions require a four-dimensional (4D) input, both the 
image and the mask were expanded to a shape of (256, 
256, 96, 1), where the final dimension represents the single-
channel nature of the images. This transformation step 
follows shuffling because shuffling can only be performed 
on data already loaded into memory. Given the dataset's 
size, it was not feasible to load all images simultaneously. 

The next stage is batching. Grouping samples into 
batches accelerates training, as the network can process 
multiple records simultaneously using optimised matrix 
operations—an area where GPUs excel. However, 
excessively large batch sizes can degrade model 
performance [18]. In this study, the batch size was limited to 
2 due to the large image dimensions. This constraint 
balances computational efficiency and hardware limitations, 
ensuring that training proceeds without exceeding memory 
capacity while still benefiting from batch processing 
optimisations. 

The final stage of the pipeline is prefetching. Unlike 
previous operations, prefetching is a performance 
optimisation mechanism rather than a transformation. It 
prepares the next batch of data while the current batch is 
being processed, efficiently utilizing computational 
resources. Since data loading primarily relies on the CPU 
while network training is GPU-intensive, prefetching 
maximises throughput by overlapping data preparation with 
model computation. 

An additional caching mechanism was considered to 
accelerate training beyond the first epoch. However, 
caching disrupts data randomness, as it preserves the 
original input order, leading to repeated exposure to the 
same data sequence. Given that caching would only yield a 
marginal (5–10%) speed improvement, it was deemed an 
inadequate trade-off against potential reductions in training 
quality. 

 
3.1. Optimization 

Compared to conventional images, volumetric images 
are significantly larger. Before shape alignment, the 
smallest image had dimensions of (190, 190, 80), while the 
largest measured (450, 450, 200). After normalisation, all 
images were resized to (256, 256, 96), with each file 
occupying 24 MB of storage. The maximum feasible batch 
size was determined to be 2, which coincides with the 
original V-Net implementation. However, V-Net’s input 
dimensions were notably smaller at (128, 128, 64) [19]. 
Batch size is a key factor influencing both performance and 
training time, and larger powers of two (e.g., 32) are often 
recommended as a starting point [20]. 

Initially, data augmentation was performed on the fly 
within the input pipeline. However, this approach proved 
computationally prohibitive, as a single epoch required 
several days to complete. Consequently, augmentation was 
conducted as a one-time preprocessing step, with the 
transformed images stored and loaded directly during 
training. 

A second inefficiency stemmed from retaining images in 
their original dimensions and resizing them dynamically 
during preprocessing. This approach was abandoned in 
favour of incorporating resizing into the data augmentation 
process, thereby standardising image dimensions before 

training. The most significant optimisation was the 
implementation of distributed training across ten GPUs. 
This was achieved using a mirrored strategy, an abstraction 
for multi-GPU training on a single machine. In this 
approach, all model variables are replicated across GPUs, 
and gradients are computed in parallel before being 
aggregated using the Hierarchical AllReduce algorithm [21]. 
The synchronised model update is then distributed across 
all GPUs, and the process repeats. 

Under this scheme, each model replica processes a 
separate batch, increasing the number of samples trained 
per iteration from 2 to 20. Although synchronisation 
overhead slightly reduces the efficiency gain, the overall 
training time per epoch was reduced by a factor of 
approximately eight. 

Lastly, the data type of augmented images and masks 
was adjusted. By default, NumPy uses float64, but float32 
was deemed sufficient for DICOM images without 
compromising precision. This simple modification reduced 
dataset storage requirements by 50%. Before these 
optimisations, training required several weeks of continuous 
processing. After implementing all improvements, the total 
training time was reduced to 8–14 hours, depending on 
model complexity. 

 
3.2. Neural networks architectures 

Three neural network architectures were compared to 
determine the most effective model for bladder localisation 
in MRI images. Each utilised ReLU [22] as the activation 
function for convolutional layers and Adam [23] as the 
optimiser. The primary distinctions between the models lay 
in their complexity and the presence or absence of 
mechanisms such as skip connections and element-wise 
additions. 

The first model, an FCN architecture (Figure 2), consists 
of downsampling and upsampling paths. 

• The downsampling path employs convolutional layers 
and max-pooling to reduce image dimensionality while 
retaining essential features. It comprises two blocks of 
3D convolutional layers, each followed by batch 
normalisation, an optional dropout layer, and a 3D 
max-pooling layer. 

• The upsampling path restores the image to its original 
dimensions via transposed convolutions and 
upsampling layers. It consists of two blocks of 3D 
transposed convolutional layers, each followed by 
batch normalisation, an optional dropout layer, and a 
3D upsampling layer. 

The convolutions use a 3×3×3 kernel with a stride of 2, 
while both pooling and upsampling operations utilise a 
2×2×2 kernel with a stride of 2. The final layer is a 1×1 3D 
convolutional layer with a Sigmoid activation function, 
producing a binary voxel-wise output identical in size to the 
input image. This model comprises 56,033 trainable 
parameters.  

The second architecture (Figure 3) is the 3D adaptation 
of the original U-Net [24]. Compared to its 2D counterpart, it 
contains only two convolutional blocks in both its 
downsampling and upsampling paths. The key feature of 
this architecture is its skip connections, which concatenate 
feature maps from the contracting path (left side of the 
network) with those from the expanding path (right side). 
This mechanism facilitates the transmission of additional 
information throughout the network, resulting in smoother 
and more precise segmentations compared to the Fully 
Convolutional Network (FCN). 

 
 



102                                                                                                       PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025 

 
Fig. 2. Architecture of the basic 3D Fully Convolutional Network 
 
 

 
Fig. 3. Architecture of the custom 3D version of U-Net 
 

 
Fig. 4. Architecture of the custom version of V-Net  
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As with the previous architecture, batch normalisation 
layers are applied after each convolutional layer, followed 
by a dropout layer where applicable. Each convolutional 
block is followed by either a pooling or an upsampling layer. 
The convolutional, pooling, and upsampling layer 
parameters remain consistent with those of the previous 
model, as does the final layer. This model contains 339,889 
trainable parameters. 

The third and final model (Figure 4) is a custom 
implementation of the V-Net architecture [19]. Like U-Net, it 
utilises skip connections to transfer feature information 
between the two sides of the network. Additionally, it 
incorporates small-scale skip connections within each 
convolutional block, enabling more features to be preserved 
as images pass through the network. 

Unlike the previous models, V-Net does not employ 
max-pooling and upsampling layers. Instead, it integrates a 
second convolutional layer within each block, using a stride 
of 2. This layer performs a similar function but possesses 
trainable weights, allowing for improved adaptability during 
training. 

All convolutional layers, except the final one, utilise 
ReLU as the activation function. Compared to the original 
V-Net, this implementation uses 3×3×3 kernels instead of 
5×5×5 kernels. The larger kernel size was found to 
introduce an excessive number of parameters, significantly 
increasing training time beyond acceptable limits. The final 
layer remains identical to those in the previous models. This 
model consists of 220,993 trainable parameters. 

 
3.3. Loss functions 

To effectively train the model, it is necessary to quantify 
the difference between its predicted output and the 
expected ground truth and subsequently minimise this error 
[25]. Selecting an appropriate loss function is crucial for 
ensuring proper network training. This study compares 
several loss functions commonly used in image 
segmentation tasks. 

Several abbreviations are used in the loss function 
formulas and throughout the paper: True Positives (TP): 
Number of voxels correctly identified as part of the bladder, 
True Negatives (TN): Number of voxels correctly identified 
as part of the background, False Positives (FP): Number of 
voxels incorrectly identified as part of the bladder (should 
have been classified as background) and False Negatives 
(FN): Number of voxels incorrectly identified as part of the 
background (should have been classified as bladder). 

The Binary Cross-Entropy loss function [26] measures 
the difference between the predicted and true probability 
distributions in binary classification tasks. Semantic 
segmentation with two classes can be conceptualised as a 
per-pixel binary classification problem. For multi-class 
cases, the generalised version of this loss function, known 
as Categorical Cross-Entropy, is used instead. 

Focal Loss [27] is designed to improve classification 
accuracy by emphasizing hard-to-classify examples more 
while downweighting the contribution of correctly classified, 
easy examples. This is achieved through the inclusion of a 

modulating factor  in the Cross-Entropy loss 
function. 

Dice Loss [28] is a region-based loss function widely 
employed in image segmentation. It measures the relative 
overlap between the predicted and ground truth 
segmentations. Crucially, Dice Loss is independent of 
region size, making it particularly valuable in imbalanced 
segmentation tasks, where the target object occupies only a 
small fraction of the image. 

Tversky Loss [29] generalises Dice Loss by introducing 
weighting factors to adjust the relative impact of false 

positives and false negatives. This function is especially 
useful in medical imaging applications, where certain types 
of misclassifications (e.g., false negatives in disease 
detection) carry greater consequences than others. 

 
3.4. Overfitting 

Overfitting is a common challenge in deep learning, 
occurring when a model becomes excessively specialised 
to the training data, thereby losing its ability to generalise to 
unseen data. This phenomenon can be identified by 
monitoring the training and validation loss dynamics. If the 
training loss decreases while the validation loss increases, 
it is a clear indication of overfitting. Several techniques have 
been implemented to mitigate this issue. 

Firstly, expanding the dataset through data 
augmentation helps combat overfitting by increasing the 
diversity of training samples. In image-based tasks, 
augmentations such as translations, rotations, and 
brightness adjustments generate new variations of existing 
images. A larger, more diverse dataset reduces the 
likelihood of the model memorising specific training 
examples, thereby improving its generalisation ability. 
Although primarily used to counteract overfitting, data 
augmentation is generally beneficial for training deep 
learning models. 

Next, a well-trained model should remain robust even in 
the presence of minor imperfections in input data. In the 
case of medical images, slight blurriness or missing pixels 
should not significantly affect the network’s ability to classify 
or segment correctly. 

To improve robustness, many models incorporate 
dropout layers, which are active only during training. These 
layers function by randomly setting a fraction of the input 
units to zero, effectively preventing the model from 
becoming overly reliant on specific features. The dropout 
rate is expressed as a fraction of affected inputs. For 
example, setting dropout = 0.1 means that 10% of the 
inputs to the subsequent layer will be randomly nullified 
during training. Dropout has been shown to enhance the 
generalisation ability of neural networks, but its effect must 
be carefully tuned to achieve an optimal balance. 

Finally, determining the optimal number of training 
epochs is critical. Training for too few epochs may result in 
an underfitted model that fails to capture important patterns. 
Training for too many epochs increases the risk of 
overfitting. One approach is to determine the best number 
of epochs experimentally. However, a more effective 
solution is to use early stopping, which automatically halts 
training when model performance ceases to improve. The 
most appropriate metric for early stopping is the validation 
loss function, as it provides a reliable indicator of how well 
the model generalises to unseen data. 

Due to the limited dataset size and training 
computational expense of various architectures under data 
augmentation and distributed learning, none of the 
automated hyperparameter tuning approaches were 
utilized. Rather, learning rate and dropout were manually 
selected by taking reasonable values from exploratory 
experiments. This enabled controlled comparisons among 
the models without the risk of overfitting and maintaining 
interpretability in the low-data scenario. 

 
4. Experiments and discussion 
 
4.1. Metrics 

Metrics are quantitative performance indicators used to 
monitor and evaluate a model’s effectiveness. Unlike loss 
functions, which are integral to the learning process, metrics 
serve to assess and describe the model’s behaviour. 
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Selecting the appropriate metrics is crucial for identifying 
and resolving issues during training [30]. 

Precision and recall were chosen due to their simplicity 
and intuitive interpretation. Additionally, Global Consistency 
Error (GCE) [31] and Volumetric Similarity (VS) [32] were 
employed. GCE quantifies the discrepancy between two 
segmentations, while VS measures the similarity between 
volumetric structures. Both metrics are widely used in 
medical image segmentation tasks [18]. 

Precision is the ratio of true positives (TP) to the total 
number of predicted positives (TP + FP). It reflects the 
reliability of the model’s predictions, where a high precision 
value indicates that most positive predictions are correct, 
even if not all positives are detected. 

Recall is the ratio of true positives to the sum of true 
positives and false negatives (TP + FN). It measures the 
model’s effectiveness at detecting all positive cases, where 
a high recall value suggests that the model successfully 
identifies most positives, even if some predictions are 
incorrect. 

Global Consistency Error (GCE) evaluates the region-
wise inconsistency between the prediction mask and the 
ground truth. The formula for binary segmentation is 
expressed as: 

 (1)  

𝐺𝐶𝐸 =  
1

𝑁
𝑚𝑖𝑛  

𝐹𝑁 𝐹𝑁 + 2𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
+ 

𝐹𝑃 𝐹𝑃 + 2𝑇𝑁 

𝑇𝑁 + 𝐹𝑃
 ,

𝐹𝑃(𝐹𝑃 + 2𝑇𝑃)

𝑇𝑃 + 𝐹𝑃
+ 

𝐹𝑁(𝐹𝑁 + 2𝑇𝑁)

𝑇𝑁 + 𝐹𝑁
 

  

 

 

where N represents the total number of voxels. Notably, 
GCE is not symmetric and must be computed in both 
directions (prediction vs. ground truth and vice versa), with 
the smaller value being selected. 

Volumetric Similarity measures how closely two 
volumetric segmentations match in terms of shape and size, 
independent of spatial placement within the image. The VS 
formula is: 

 (2)              

 

A high VS value suggests a successful segmentation 
when combined with high scores in other metrics. Notably, 
VS can reach its maximum value of 1 even when one of the 
volumes is disjointed from the actual region of interest. 

 
4.2. Evaluation 

Given the computational demands of training, testing all 
possible combinations of network architectures, loss 
functions, and hyperparameters was impractical. Instead, 
exploratory training sessions were conducted, varying a 
single parameter at a time. Although this approach did not 
guarantee an optimal configuration, it provided valuable 
insights into model behaviour under different conditions. 

The dataset size was reduced to 20% of its original 
capacity to expedite training while maintaining a 
representative sample. The selected subset remained 
consistent across experiments, with two images excluded 
and allocated evenly to the validation and test sets. Each 
training session lasted 20 epochs, ensuring meaningful 
comparisons while mitigating overfitting risks. 

The basic FCN architecture was used to evaluate 
different loss functions with a fixed learning rate of 0.001 
and a dropout rate of 0.2. The Tversky Loss was tested 
twice: 

• α > β, placing greater emphasis on false positives, 

• α < β, penalising false negatives more heavily. 

Table 1. Performance metrics for different loss functions, results 
after 20 training epochs 

 

The exceptionally low loss values for BCE and Focal 
BCE are misleading, as they fail to capture spatial overlap 
between the predicted segmentation and the ground truth. 
Given that the bladder occupies only a small fraction of the 
volumetric image, predicting the entire volume as 
background results in a deceptively low loss value, despite 
poor segmentation performance. 

Dice Loss provided more predictable results, stabilising 
at approximately 0.75 during validation. However, Focal 
Dice emerged as the best performer, achieving the highest 
precision and GCE scores, albeit with slightly lower recall 
and VS values. 

Among the Tversky Loss variants, the α=0.7, β=0.3 
configuration yielded notable results. Although its training 
curve remained relatively flat, it ultimately outperformed the 
α=0.3, β=0.7 variant in both precision and recall. These 
findings suggest penalising false positives more than false 
negatives leads to slower convergence and better overall 
performance. Based on these observations, Focal Dice was 
selected as this dataset's most effective loss function. 

Next, the three CNN architectures (FCN, U-Net, and V-
Net) were evaluated using Dice Loss with a dropout rate of 
0.2. The default learning rate (0.001) was adjusted to 
0.0001, 0.0005, and 0.002 to analyse its impact. Table 2 
presents the final metric values after 20 training epochs 
across different architectures. 

The decision to limit training to 20 epochs was 
motivated by the risk of overfitting, which is particularly 
pronounced when working with a small and imbalanced 
dataset. In such cases, the model’s generalisation ability is 
inherently constrained, and prolonged training increases the 
likelihood of memorising training data rather than learning 
meaningful patterns. 

The V-Net model exhibited significant instability, 
characterised by a sudden increase in training loss and 
persistently high validation loss, preventing meaningful 
convergence. As a result, the model failed to generate valid 
segmentation masks in certain cases, leading to undefined 
(NaN) or zero-valued metric scores. This behaviour 
highlights the incompatibility of V-Net with the selected 
training settings, further justifying its exclusion from 
subsequent evaluations. 

In the subsequent phase of the study, the fundamental 
FCN architecture was employed in conjunction with the 
Dice Loss function and an initial learning rate of 0.001 to 
determine the optimal dropout rate [33]. Initially, the dropout 
rate was set to 0.2, a value previously identified as a 
suitable starting point for CNN-based networks [34]. 
Subsequently, this parameter was increased to 0.4, a value 
generally considered excessive, then decreased to 0.1. 
Additionally, a variant without dropout was tested. The final 
metric values after 20 epochs are presented in Table 3. 

The influence of the dropout rate on the training loss 
curves is not immediately evident. However, the validation 
loss values and corresponding metrics are significantly 
affected by this parameter, decreasing as the dropout rate 
is reduced and reaching their lowest values in the absence 
of dropout. The trends in precision and recall indicate that 
precision increases as the dropout rate rises, whereas 
recall declines. The baseline model achieves the most 

Loss function GCE VS Precision Recall 

BCE 0.4203 0.3537 0.6863 0.0877 
Focal Loss 0.7077 0.6564 0.7896 0.1193 

Dice 0.3812 0.2473 0.8324 0.084 
Focal Dice 0.3774 0.2073 0.8897 0.0722 

Tversky (α=0.3, β=0.7) 0.3951 0.2708 0.7099 0.0818 
Tversky (α=0.7, β=0.3) 0.3920 0.3956 0.7608 0.1501 
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balanced trade-off between these two metrics, 
corresponding to a lower Focal Dice loss value. As 
precision and recall diverge further with increasing dropout, 
the loss function values also increase. Volumetric Similarity 
(VS) follows a pattern similar to recall, whereas Global 
Consistency Error (GCE) exhibits a distinct trend: it begins 
at a high value, decreases to its minimum at a dropout rate 
of 0.2, and then increases again. 

 
Table 2. Performance metrics for different learning rates 

Model GCE VS Precision Recall 

Learning rate 0,0001 
FCN 0.3774 0.2073 0.2073 0.2073 

U-Net 0.9378 0.3431 0.3431 0.3431 
V-Net 0.4302 0.2459 0.2459 0.2459 

Learning rate 0,0005 
FCN 0.3856 0.342 0.7759 0.1257 

U-Net 0.4870 0.4125 0.4471 0.2447 
V-Net 0.3951 0.085 0.287 0.0098 

Learning rate 0,001 
FCN 0.3686 0.2597 0.9452 0.102 

U-Net 0.5515 0.4295 0.3992 0.3125 
V-Net 0.3898 0.0697 0.4259 0.0128 

Learning rate 0,002 
FCN 0.3827 0.3346 0.7982 0.1246 

U-Net 0.3722 0.4156 0.8036 0.1754 
V-Net NaN 0 0 0 

 
Table 3. Performance metrics for different dropout factors 

Variant GCE VS Precision Recall 

No 
dropout 

0.5974 0.5151 0.3957 0.3559 

0.1 0.3926 0.5054 0.7615 0.223 
0.2 0.3686 0.2597 0.9452 0.102 
0.3 0.3764 0.071 0.9829 0.0231 
0.4 0.3767 0.0134 1 0.0041 

 
For brevity, Table 3 presents results exclusively for the 

FCN model. Notably, dropout exhibited a comparable 
influence across all tested architectures, with variations in 
prediction performance remaining within the 36%–42% 
range. As such, including results for U-Net and V-Net would 
not provide additional insights beyond those already 
discussed. 

 
4.3. Main training 

The findings from the exploratory training exercises 
indicate that V-Net is not a viable candidate for further 
consideration, as it has demonstrated a clear lack of 
performance. The suboptimal outcomes observed for this 
architecture are likely attributable to modifications 
introduced to enhance computational efficiency, such as 
reducing the kernel size and decreasing the number of 
convolutional blocks. It has been done to limit the number of 
trainable parameters and reduce model complexity. While 
this adjustment was made to improve generalisation in the 
context of a small training set, it did so at the cost of slightly 
reducing segmentation accuracy. This is the unavoidable 
trade-off for the general problem of balancing model 
expressiveness against overfitting risk when training on 
highly constrained data. These results illustrate the 
importance of architectural optimisation in low-data 
environments. Therefore, the relatively modest complexity 
of the problem may have contributed to V-Net’s poor 
performance. 

Among the remaining two models, U-Net exhibits a 
slight advantage over FCN. However, the disparity in 
performance is minimal, warranting further evaluation of 
both models on the entire dataset. Regarding 
hyperparameters, the findings from the previous section do 
not consistently indicate a single superior configuration. 

Concerning the dropout rate, both 0.2 and 0.1 
demonstrate strong performance. However, 0.1 was 
selected due to its superior balance between precision and 
recall, its twofold increase in VS, and only a marginal 
difference in GCE. Regarding the learning rate, the results 
suggest that different values are optimal for each model. 
FCN performed best with a learning rate of 0.001 and U-Net 
achieved optimal performance with a learning rate of 
0.0005. These considerations are summarised in Figure 5. 

The entire dataset was utilized for the primary training 
phase, with samples divided in the same manner as in the 
exploratory training sessions. The final metrics results are 
provided in Table 4. As in previous experiments, validation 
loss fluctuations precluded the application of an early 
stopping strategy. Moreover, neither network exhibited clear 
signs of overfitting, making it difficult to determine an 
optimal number of training epochs. 

 
Fig. 5. Optimal variation of training parameters determined from 
exploratory training results 

 
Table 4. Performance metrics for full-scale training 

Model GCE VS Precision Recall 

FCN 0.4512 0.4674 0.5275 0.1883 
U-Net 0.6679 0.3335 0.2632 0.2583 

 
In contrast to the shorter training exercises, the FCN 

model demonstrates a marked advantage over U-Net in full-
scale training. The validation loss remains consistently 
lower for FCN compared to U-Net. Furthermore, GCE and 
precision scores show substantial improvements, VS is 
marginally higher, and the difference in recall is negligible. 

The Dice coefficient for FCN is 0.277. While this value 
may be considered suboptimal in scenarios where sufficient 
training data is available, it is a satisfactory outcome given 
the dataset’s limitations. Both the Dice coefficient and Dice 
Loss penalise discrepancies harshly, which explains why 
this relatively low value still results in reasonable 
segmentation performance, as illustrated in Figure 6. 
Several factors contributed to this, including anatomical 
variability, low contrast of MRI scans, and the inherent 
complexity of target structures. While this score is not 
clinically sufficient, it is an encouraging indicator of 
feasibility. Despite the challenges, the models could pick up 
on pertinent spatial patterns and structural features. The 
centre of Figure 6 presents the original MRI image, 
previously unseen by any of the trained models during 
training or validation. The left column displays the predicted 
segmentation masks generated by U-Net and FCN, 
respectively. The predictions are overlaid onto the original 
image in the right column, visually representing the 
segmentation results. 

Due to the limited availability of original DICOM images, 
the authors prioritised ensuring an adequate number of 
training and validation sets. Consequently, only one image 
was retained for final prediction. 

The segmentation produced by U-Net appears slightly 
inferior to that of FCN. Although the predicted volume is 
smoother and potentially captures a larger portion of the 
bladder, it erroneously includes part of an adjacent organ as 
an artefact. This significant misclassification suggests that 
U-Net may be impractical for further consideration. 
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Fig. 6. Visualization of bladder detection 

 
5. Conclusions 

This paper proposes a new supervised learning 
approach for artificial intelligence-based segmentation of 
the lower urinary tract in the context of limited and 
imbalanced training data. Despite the constraints of a small 
dataset, our results confirm the feasibility of constructing 
effective models for segmentation by employing dedicated 
data augmentation, computational optimization, and 
stringent model evaluation. 

To improve model performance under data scarcity 
conditions, the authors introduced a task-driven 
augmentation strategy that ensures maximum variability in 
the dataset with anatomical consistency. It involves using 
multiple augmentation strategies optimized for the intrinsic 
nature of MRI data so that it becomes generalizable without 
compromising medical validity. 

A dynamic data pipeline was created that supports 
distributed GPU computation to fit the increased 
computational demand necessitated by augmentation. It 
allowed us to efficiently train models on large augmented 
datasets, overcoming hardware limitations without 
sacrificing scalability. 

Comparison of three CNN models (FCN, U-Net, and V-
Net) showed that FCN was superior to the others on full-
scale training, with up to 94% precision and global 

consistency error less than 37%. This confirms that good 
model selection and strong augmentation and training 
strategies can lead to acceptable segmentation outcomes 
even in low-data scenarios. 

Several overfitting reduction methods were used to 
ensure that the models learned generalizable features 
instead of artefacts specific to the dataset. The research 
highlights how curriculum learning and hybrid CNN 
architectures can enhance robustness and learning 
efficiency. 

The proposed methods gave solutions to the key 
research questions: 

• Task-driven data augmentation preserves 
anatomical consistency while enhancing dataset 
variability, resulting in better segmentation accuracy. 

• Self-supervised pretraining, curriculum learning, and 
hybrid CNN architectures enhance model robustness 
and generalisation. 

Although data augmentation is critical in low-resource 
settings, we are also aware of its limitations, such as 
increased computational needs and bias amplification 
potential. Augmentation cannot fully replace non-diversity in 
the data and relies heavily on trial-and-error to be effective.  
The model that has been established paves the way for 
adaptive, ever-evolving AI-based segmentation tools within 
the clinical setting. Instruments such as clustering and the 
Picking Tool offered enable model refinement by an expert, 
allowing for real-world diagnostic pipelines and future model 
retraining. 
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