
118 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025

1. Aleksandr CARIOW, 2. Marina POLYAKOVA

ORCID: 1.0000-0002-4513-4593; 2.0000-0001-7229-7657

DOI: 10.15199/48.2025.06.20

On the multiplications of pure quaternions

Mnożenie czystych kwaternionów

Abstract. The need to multiply quaternions when at least one quaternion is pure arises in the number of applications related to information
processing. In this case, different situations may arise. It may turn out that the multiplicand is a vector quaternion, and the multiplier is an ordinary
quaternion. Another problem is when the multiplicand is an ordinary quaternion, and the multiplier is a vector one. Finally, a situation may arise
where both factors are pure quaternions. In all three cases, the number of real multiplications can be reduced compared to the number of real
multiplications required to compute the product of ordinary quaternions. The article discusses algorithmic solutions that allow reducing the number of
real multiplications when calculating quaternion products in each of the mentioned cases.

Streszczenie. Potrzeba mnożenia kwaternionów, gdy przynajmniej jeden kwaternion jest czysty, pojawia się w wielu zastosowaniach związanych z
przetwarzaniem informacji. W tym przypadku mogą wystąpić różne sytuacje. Może się okazać, że mnożna jest kwaternionem wektorowym, a
mnożnik jest kwaternionem zwykłym. Innym problemem jest sytuacja, gdy mnożna jest kwaternionem zwykłym, a mnożnik jest kwaternionem
wektorowym. Wreszcie może wystąpić sytuacja, w której oba czynniki są kwaternionami czystymi. We wszystkich trzech przypadkach liczba
rzeczywistych mnożeń może zostać zmniejszona w porównaniu z liczbą rzeczywistych mnożeń wymaganych do obliczenia iloczynu kwaternionów
zwykłych. W artykule omówiono rozwiązania algorytmiczne, które pozwalają na zmniejszenie liczby rzeczywistych mnożeń podczas obliczania
iloczynów kwaternionów w każdym z wymienionych przypadków.

Keywords: hypercomplex data processing, quaternion multiplication, pure quaternion
Słowa kluczowe: analiza obwodów elektrycznych, mnożenie kwaternionów, czysty kwaternion

Introduction
Currently, hypercomplex numbers, in particular

quaternions [1], are used to solve data processing problems
in various fields of science and technology. This concerns
such fields as electrical engineering [2, 3], mechanics [4],
robotics [5-7], machine vision [8, 9], computer graphics and
animation [10-12], digital signal processing and image
processing [13], neural networks [14], and many others [15].

It should be noted, however, that quaternion-valued
arithmetic operations are, in one way or another, reduced to
performing operations with real numbers. Among other
arithmetic operations on quaternions, the most expensive
operation is the operation of their multiplication. The
quaternion multiplication is performed in quaternion-valued
filtering for color-edge detection and image smoothing [13].
The quaternion principal component analysis [13] and
quaternion convolution [14] also use the quaternion
multiplication. In [2, 3] electrical single and three-phase
quantities such as voltage, current, impedance, and power
are defined as quaternions, and the multiplication of
quaternions is used in the electrical context.

 The computational complexity of quaternion-valued
arithmetic operations is because to perform just one
addition of quaternions, 4 operations of addition of real
numbers are required, and the quaternion multiplier
requires 16 operations of multiplication and 12 operations of
addition. It is also known that among arithmetic operations
on real data, multiplication is also the most time-intensive
operation [16]. To reduce computation time, in [17,18]
authors proposed algorithms with a minimum number of
multiplications [17,18]. However, it turns out that if at least
one of the quaternion-valued factors is a pure quaternion,
the number of real multiplications can be further reduced.
Below we propose algorithmic solutions that require the
fewest number of arithmetic operations when calculating the
product of quaternions if at least one quaternion is pure.

Preliminaries

A quaternion can be defined as

0 1 2 3u u u i u j u k= + + + , where 0 1 2 3, , ,u u u u R , R is a

real number field, and i , j , k are basic imaginary units

satisfying the following multiplication relations [1]:

2 2 2
1i j k= = = − , ij ji k= − = , jk kj i= − = ,

ki ik j= − = .

We would like to immediately make it clear that since
the multiplication of quaternions is non-commutative, we will
use the left-sided product for the sake of certainty. The
right-sided product can be rationalized similarly.

Typically the quaternions are multiplied similarly to the
multiplying the polynomials.

If 0 1 2 3u u u i u j u k= + + + , and 0 1 2 3x x x i x j x k= + + +

are quaternions, then the product ux is expressed as

follows

(1)

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

0 1 1 0 2 3 3 2

0 2 1 3 2 0 3 1

0 3 1 2 2 1 3 0

()()

()

()

()

() .

ux u u i u j u k x x i x j x k

u x u x u x u x

u x u x u x u x i

u x u x u x u x j

u x u x u x u x k

= + + + + + +

= − − −

+ + + −

+ − + +

+ + − +

Applying (1) requires 16 multiplications and 12 additions
of real numbers. In [17] a more efficient algorithm for
calculating the product of two quaternions with reduced
multiplicative complexity is proposed. Using this algorithm
the two quaternions can be multiplied using 8 multiplications
and 28 additions of real numbers. In the general case, this
algorithm additionally requires performing 8 shifts. However,
if at least one quaternion in the product is pure, the number
of real multiplications can be reduced. Let us consider this
possibility in more detail.

The following notations are used below [19-20]: NI is

an order N identity matrix; 2H is a 2×2 Hadamard matrix; 

is the Kronecker product of two matrices;  is the direct
sum of two matrices.

PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025 119

Algorithm for the multiplying an ordinary quaternion by
a pure quaternion

If 0 1 2 3x x x i x j x k= + + + is an ordinary quaternion, and

1 2 3u u i u j u k= + + is a pure quaternion (0 0u =), then the

multiplying x by u as polynomials is given by expression

(2)
1 2 3 0 1 2 3

1 1 2 2 3 3 1 0 2 3 3 2

1 3 2 0 3 1 1 2 2 1 3 0

()()

() ()

() () .

ux u i u j u k x x i x j x k

u x u x u x u x u x u x i

u x u x u x j u x u x u x k

= + + + + +

= − − − + + −

+ − + + + − +

The computation of the expression (2) requires 12
multiplications and 11 additions of real numbers. Below we
show the derivation of an algorithmic solution characterized
by lower multiplicative complexity. If we express the
ordinary quaternion x and pure quaternion u in matrix

notation then the following expression is obtained:

4 1 4 4 1 =Y U X ,

where
T

4 1 0 1 2 3[, , ,]y y y y =Y ,
T

4 1 0 1 2 3[, , ,]x x x x =X ,

1 2 3

1 3 2
4

2 3 1

3 2 1

0

0

0

0

u u u

u u u

u u u

u u u

− − − 
 

−
 =
 −
 

− 

U .

After altering the sign of the first row of the matrix 4U ,

the obtained matrix
()
4
a

U was decomposed as

(3)
() () ()
4 4 4
a b c
= −U U U ,

where

1 2 3

1 3 2()
4

2 3 1

3 2 1

0

0

0

0

b

u u u

u u u

u u u

u u u

 
 
 =
 
 
 

U , 3()
4

1

2

0 0 0 0

0 0 2 0

0 0 0 2

0 2 0 0

c u

u

u

 
 
 =
 
 
 

U .

Comparison with the matrix templates from [21] shows

that the matrix
()
4
b

U matches the pattern
2 2

2 2

 
 
 

A B

B A
,

where
1

2
1

0

0

u

u

 
=  
 

A ,
2 3

2
3 2

u u

u u

 
=  
 

B .

Then we obtain the factorization

(4)
()

() () ()

()
2 24

2 2 2 2 2 2

1/ 2

.

b
= 

 +  −   

U H I

A B A B H I

The resulting matrices match the pattern
a b

b a

 
 
 

,

where 2a u= , 1 3b u u= + for matrix 2 2+A B , and

2a u= − , 1 3b u u= − for the matrix 2 2−A B . Therefore,

2 2+A B is factorized as

(5) () () () ()2 2 2 2 2 21/ 2 a b a b+ =  +  −   A B H I H I .

The matrix 2 2−A B is decomposed similarly.

Taking into account the product

()() T
4 1 3 1 2 0 2 3 14 0, 2 , 2 , 2 [, , ,]

c
diag u u u x x x x =U X ,

and the expressions (3), (4), and (5), we obtain the
following factorization of the quaternion matrix:

(6)
(2) (0) (0) (1)

4 1 4 7 7 7 4 4 17 7 7 7   =Y W W W D W W W X ,

where

()7 0 1 2 3 4 5 6, , , , , , ,diag s s s s s s s=D

()0 1 2 3 / 4s u u u= + + , ()1 2 1 3 / 4s u u u= − − ,

()2 2 1 3 / 4s u u u= − + − ; ()3 2 1 3 / 4s u u u= − − + ;

4 32s u= ; 5 12s u= ; 6 22s u= ;

()(1)
2 2 37 =  W H I P ; 3

0 1 0

0 0 1

1 0 0

 
 

=
 
  

P ;

()(2)
2 2 37 =  W H I I ; (0)

2 2 37 =  W H H I ;

T

7 4

1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



 
 
 =
 
 
 

W ;

4 7

1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



− 
 

−
 =
 −
 

− 

W .

Based on the resulting factorization (6) of the quaternion
matrix, the algorithm for multiplying an ordinary quaternion
by a pure quaternion is shown by the data flow graph in
Figure 1. It illustrates the space-time structure of the
developed algorithm. The data flow graph is oriented from
right to left, and the straight lines denote the data transfer
operations. The dashed lines determine the data transfer
operations by simultaneously altering the sign. Nodes with
the connected lines define summations, and nodes with the
diverged lines mean data transfer. Circles denote
multiplications.

Fig. 1. Data flow graph of the algorithm for multiplying an ordinary
quaternion by a pure quaternion

Now we will construct an algorithm for calculating the

coefficients 0s , 1s , 2s , 3s . In matrix notation, we obtain the

expression

0s

1s

2s

3s

4s

5s

6s

0x

1x

2x

3x

0y

1y

2y

3y

120 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025

4 1 4 3 3 1  =S W U , ()
T

4 1 0 1 2 3, , ,s s s s =S ,

T
3 1 1 2 3[, ,]u u u =U , 4 3

1 1 1̀

1 1 11

1 1 14

1 1 1



 
 
− −
 =
 − −
 
− − 

W .

Having decomposed the matrix 4 3W we obtain

(0)
4 1 3 3 14 31/ 4 =S W W U ,

where 3

1 0 1

0 1 0

1 0 1

 
 

=
 
 − 

W .

The algorithm for the calculation of the coefficients 0s ,

1s , 2s , 3s of the multiplying an ordinary quaternion by a

pure quaternion is presented in the data flow graph in
Figure 2. We are able to reduce the number of additions
from 8 to 6 compared to the calculation of these
coefficients using the expression (6).

Fig. 2. The data flow graph for the calculation of the coefficients for
multiplying an ordinary quaternion by a pure quaternion

From here on it is easy to see that the algorithms we
synthesize contain multiplications by powers of two. These
are the so-called trivial multiplications since they are
reduced to simple shift operations. Some researchers do
not even take these operations into account when
calculating the total number of mathematical operations
required to implement the algorithms. However, for the sake
of completeness, we will still take them into account.

So, in general, the algorithm requires 7 multiplications,
25 additions, four double right shifts, and three left shifts.
However, if the quaternion u , as is often the case, has

constant coefficients, then the number of additions is
reduced to 19, and the shifts disappear altogether.

Algorithm for the multiplying a pure quaternion by an
ordinary quaternion

Let 0 1 2 3u u u i u j u k= + + + be an ordinary quaternion,

1 2 3x x i x j x k= + + be a pure quaternion (0 0x =). The

multiplying x by u as polynomials is given as

(7)

0 1 2 3 1 2 3

1 1 2 2 3 3 0 1 2 3 3 2

0 2 1 3 3 1 0 3 1 2 2 1

()()

() ()

() () .

ux u u i u j u k x i x j x k

u x u x u x u x u x u x i

u x u x u x j u x u x u x k

= + + + + +

= − − − + + −

+ − + + + −

As one can be seen, the computation of the expression
(7) requires 12 multiplications and 11 additions of real
numbers. We show the derivation of an algorithmic solution
characterized by lower multiplicative complexity. If we
express the ordinary quaternion u and pure quaternion x

in matrix notation then the following expression is obtained:

4 1 4 3 3 1  =Y U X ,

where

T
3 1 1 2 3[, ,]x x x =X ,

1 2 3

0 3 2
4 3

3 0 1

2 1 0

u u u

u u u

u u u

u u u



− − − 
 

−
 =
 −
 
− 

U .

Next, we alter the sign of the first row of the matrix

4 3U . The obtained matrix
()
4 3
a
U can be decomposed as

(8)
() () ()
4 3 4 3 4 3
a b c
  = −U U U ,

where

1 2 3

0 3 2()
4 3

3 0 1

2 1 0

b

u u u

u u u

u u u

u u u



 
 
 =
 
 
 

U , 3()
4 3

1

2

0 0 0

0 2 0

0 0 2

2 0 0

c u

u

u



 
 
 =
 
 
 

U .

It should be said that it is difficult to find a successful

factorization for the matrix
()
4 3
b
U . However, we can

artificially supplement it with a column of the following type

T
0 1 2 3[, , ,]u u u u . As a result, we obtain the matrix

0 1 2 3

1 0 3 2()
4

2 3 0 1

3 2 1 0

d

u u u u

u u u u

u u u u

u u u u

 
 
 =
 
 
 

U ,

which can be factorized instead of the matrix
()
4 3
b
U . The

matrix obtained in this way can be easily factorized [17]
using decompositions (4) and (5), Then, considering that for

pure quaternion 0 0x = , the resulting decomposition and

data flow graph can be corrected. Then, taking into account
the fact that the resulting decomposition, as well as the
algorithm graph, can be corrected.

Based on the expressions (4)-(6) and (8) we obtain the
following factorization of the quaternion matrix:

(9)
(2) (0) () (0) (1)

4 1 4 7 7 3 3 17 7 7 7 7
a

   =Y W W W D W W W X ,

where ()()
7 8 9 10 4 5 67 , , , , , , ,

a
diag s s s s s s s=D

()7 0 1 2 3 / 4s u u u u= + + + ; ()8 0 2 1 3 / 4s u u u u= + − − ;

()9 0 2 1 3 / 4s u u u u= − + − ; ()10 0 2 1 3 / 4s u u u u= − − + ;

T

7 3

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



 
 

=
 
  

W ,

and the matrices 4 7W ,
(0)
7W ,

(1)
7W ,

(2)
7W and

coefficients 4s , 5s , 6s are defined in (6).

The algorithm for multiplying a pure quaternion by a

regular quaternion, based on the obtained factorization (9)
of the quaternion matrix, is shown by the data flow graph in
Figure 3.

41

41

41

41

1u

2u

0s

1s

2s

3s3u

PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025 121

Fig. 3. Data flow graph of the algorithm of the multiplying a pure
quaternion by an ordinary quaternion

Let synthesize the algorithm to calculate the coefficients

7s , 8s , 9s , 10s . In matrix notation we obtain the expression

()
4 4 14 1

a
 =S W U , ()

T()
7 8 9 104 1 , , ,

a
s s s s =S ,

T
4 1 0 1 2 3[, , ,]u u u u =U , 4

1 1 1 1̀

1 1 1 11

1 1 1 14

1 1 1 1

 
 

− −
 =
 − −
 

− − 

W .

The matrix 4W matches the pattern
2 2

2 2

 
 

− 

H H

H H
, and

we give

() (1) (0)
4 14 1 4 41/ 4

a
 =S W W U ,

where
(1)

2 24 = W H H ,
(0)

2 24 = W H I .

The algorithm for the calculation of the coefficients 7s ,

8s , 9s , 10s during the multiplying a pure quaternion by an

ordinary quaternion is presented in the data flow graph in
Figure 4.

Fig. 4. The data flow graph for the calculation of the coefficients for
the multiplying a pure quaternion by an ordinary quaternion

The algorithm requires 7 multiplications, 25 additions,
four double right shifts and three left shifts. However, if the
quaternion u, as is often the case, has constant coefficients,
then the number of additions is reduced to 19, and the shifts
disappear altogether.

Algorithm for the multiplying two pure quaternions

If 1 2 3u u i u j u k= + + and 1 2 3x x i x j x k= + + are pure

quaternions, then the multiplying x by u as polynomials is

given by expression

(10)

1 2 3 1 2 3

1 1 2 2 3 3 2 3 3 2

3 1 1 3 1 2 2 1

()()

() ()

() () .

ux u i u j u k x i x j x k

u x u x u x u x u x i

u x u x j u x u x k

= + + + +

= − − − + −

+ − + + −

Calculating the product (10) requires 9 multiplications
and 5 additions of real numbers. We can show a solution
that requires fewer operations. If we represent the
multiplication of pure quaternions u and x in matrix

notation, we obtain the following expression:

()
4 1 3 14 3

d
 =Y U X ,

where

1 2 3

3 2()
4 3

3 1

2 1

0

0

0

d

u u u

u u

u u

u u



− − − 
 

−
 =
 −
 
− 

U .

If we change the sign of the first row of the matrix
()
4 3
d
U

then the obtained matrix
()
4 3
e
U can be decomposed as

(11)
() () ()
4 3 4 3 4 3
e f c
  = −U U U ,

where
()
4 3
c
U is defined in (8), and

1 2 3

3 2()
4 3

3 1

2 1

0

0

0

f

u u u

u u

u u

u u



 
 
 =
 
 
 

U .

It should be said that it is also difficult to find a

successful factorization for matrix
()
4 3
f
U . However, we can

artificially supplement it with a column of the following type

T
1 2 3[0, , ,]u u u . As a result, we obtain the matrix

()
4
b

U . This

matrix can be factorized instead of the matrix
()
4 3
f
U , using

expressions (4), (5). Then, taking into account the fact that

for pure quaternion 0 0x = , the resulting decomposition, as

well as the data flow graph, can be corrected.
Further, based on the expressions (4)-(6) and (9), (11)

we obtain the following factorization of the quaternion
matrix:

(12)
(2) (0) (0) (1)

4 1 4 7 7 7 3 3 17 7 7 7   =Y W W W D W W W X ,

where 7D ,
(0)
7W ,

(1)
7W ,

(2)
7W are defined as in (6), and

7 3W is determined as in (9).

Applying the factorization (12) of the quaternion matrix,
the algorithm for multiplying two pure quaternions can be
presented by data flow graph in Figure 3 where

0s , 1s , 2s , 3s are used as multipliers instead of the 7s , 8s ,

9s , 10s . The data flow graph for computing the coefficients

0s , 1s , 2s , 3s was shown in Figure 2.

As in the previous case, the algorithm requires 7
multiplications, 25 additions, four double right shift
operations, and three left shifts. If the quaternion u is a
constant quaternion, then the number of additions is also
reduced to 17, and shifts are not required.

Discussion of the computational complexity and
verification of the obtained solutions

The tables below present estimates of the number of
arithmetic operations required to calculate a product of
quaternions. The cases of multiplication of two ordinary

41

41

41

41

1u

2u

7s

8s

9s

10s3u

0u

7s

8s

9s

10s

4s

5s

6s

1x

2x

3x

0y

1y

2y

3y

122 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025

quaternions (a well-known algorithm) are considered, as
well as new algorithmic solutions concerning the calculation
of products when one or both quaternions are pure
quaternions. Table 1 summarizes estimates regarding
schoolbook methods for calculating quaternion products.
Table 2 presents the estimates of the proposed algorithms
for multiplying quaternions with variable coefficients, and
Table 3 presents the estimates of the same algorithms for
the case when the coefficients of the quaternion u are

constant numbers.
An experimental study of the correctness of the

proposed algorithms was implemented using the MATLAB
R2023b software. For this purpose, fifty 4D vectors with
normally distributed elements with zero mean and unit
variance were generated. The resulting vectors were
presented as quaternions. Then, the products of ordinary
and pure quaternions, pure and ordinary quaternions, and
the product of two pure quaternions were calculated using
matrix-vector products. In addition, calculations were
implemented with quaternion matrices factorized using
expressions (6), (9), and (12). The results were found to
match, indicating the correctness of the developed
algorithms. In addition, the correctness of the proposed
data flow graphs for the constructed algorithms was
checked on the same generated 4D random vectors. The
corresponding quaternions were multiplied first as usual
matrix-vector products, and then using data flow graphs.
The coincidence of the results showed the correctness of
the data flow graphs for the proposed algorithms.

Table 1. The number of operations in schoolbook methods for the
quaternion multiplying

Quaternion product: Multiplications Additions Shifts

ordinary × ordinary 16 12 -

ordinary × pure 12 11 -

pure × ordinary 12 11 -

pure × pure 9 5 -

Table 2. The number of operations for the proposed quaternion
multiplying algorithms

Quaternion product: Multiplications Additions Shifts

ordinary × ordinary [17] 8 28 8

ordinary × pure 7 25 7

pure × ordinary 7 25 7

pure × pure 7 25 7

Table 3. The number of operations for quaternion multiplication
algorithms in the case where quaternion u is a “constant”

quaternion

Quaternion product: Multiplications Additions Shifts

ordinary × ordinary [17] 8 20 4

ordinary × pure 7 19 4

pure × ordinary 7 17 4

pure × pure 7 17 4

Conclusions

The paper presents new algorithms for calculating the
product of two quaternions, assuming that at least one
quaternion is pure. Even compared to the best fast
quaternion multiplication algorithm [17], we save one real
multiplication. This may seem like a small thing, but it is
important too. Unfortunately, the number of real additions
has increased. However, as already noted, a common
situation is when one of the quaternions (in our case, u)

has constant number coefficients. In this case, the number
of additions is reduced. In cases where the multiplication
operation is more costly than the addition operation, the
resulting solutions become especially useful. The noted
advantages of the developed algorithms allow us to assume
their practical suitability for solving applied problems in
various fields of science and technology.

Authors: prof. dr hab. inż. Aleksandr Cariow, Zachodniopomorski
Uniwersytet Technologiczny w Szczecinie, Wydział Informatyki, ul.
Żołnierska 49, 71-210 Szczecin, E-mail: acariow@zut.edu.pl ; dr
hab. Marina Polyakova, Narodowy Uniwersytet Politechnika w
Odesie, Instytut Systemów Komputerowych, al. Szewczenki 1,
65044 Odesa, E-mail: polyakova@opu.edu.ua.

REFERENCES
[1] Kantor I., Solodovnikov A., Hypercomplex numbers, Springer-Verlag, New York, 1989.
[2] Barry N., The application of quaternions in electrical circuits, 2016 27th Irish Signals and Systems Conference (ISSC), IEEE, 2016,

DOI: 10.1109/ISSC.2016.7528440.
[3] Do Prado Brazil V., de Leles Ferreira Filho A., Ishihara J. Y., "Electrical three phase circuit analysis using quaternions," 2018 18th

International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 2018, pp. 1-6, doi:
10.1109/ICHQP.2018.8378813.

[4] Wie B., Barba P. M., Quaternion Feedback for Spacecraft Large Angle Maneuvers, Journal of Guidance Control and Dynamics, vol. 8,
no. 3, pp 360- 365, 1985.

[5] Yuan J. S. C, Closed Loop Manipulator Control With Quaternion Feedback, IEEE Trans. on Robotics and Automation, vol. 4, no. 4, pp.
434-439, 1988.

[6] Chao Hu, Meng, M. Q. H., Mandal, M., Liu, P.X., Robot Rotation Decomposition Using Quaternions, International Conference on
Mechatronics and Automation, 25-28 June 2006, 1158 – 1163.

[7] Cariow A., Cariowa G., Majorkowska-Mech D., An algorithm for quaternion-based 3D rotation, Int. J. Appl. Math. Comput. Sci., 2020,
vol. 30, No. 1, pp. 149–160

[8] Mukundan R., Malik N. K., Attitude Estimation Using Moment Invariants, Pattern Recognition Letters, vol 14, pp. 199-205, 1993.
[9] Horn B. K. P, Closed Form Solution of Absolute Orientation Using Unit Quaternions, Journal of the Optical Society of America, Vol. 4,

No. 4 (1987), pp 629- 642.
[10]Watt A., Watt M., Advanced Animation and Rendering Techniques, Addison Wesley (1992).
[11] Vince, J. Virtual Reality Systems, Addison-Wesley (1999).
[12]Vince, J. Quaternions for Computer Graphics; Springer: London, UK, 2011.
[13] Miron S., Flamant J., Le Bihan N., Chainais P., Brie D., Quaternions in Signal and Image Processing: A comprehensive and objective

overview, IEEE Signal Processing Magazine, vol. 40, no. 6, pp. 26-40, 2023, DOI: 10.1109/MSP.2023.3278071
[14] Hirose A., Shang F., Otsuka Y., Natsuaki R., Matsumoto Y, Usami N, Song Y., Chen H., Quaternion Neural Networks: A physics-

incorporated intelligence framework, IEEE Signal Processing Magazine, vol. 41, no. 3, pp. 88 – 100, 2024, doi:
10.1109/MSP.2024.3384179

[15] Bayro-Corrochano E. A Survey on Quaternion Algebra and Geometric Algebra Applications in Engineering and Computer Science
1995-2020, IEEE Access, v. 9, pp. 104326-104355, 2021, Doi: 10.1109/ACCESS.2021.3097756.

[16] de Groote H. F., On the complexity of quaternion multiplication, Infor. Process. Lett., vol.43, no.6, pp.161-164, 1975.
[17] Ţariova G., Ţariov A., Aspekty algorytmiczne redukcji liczby bloków mnożących w układzie do obliczania iloczynu dwóch kwaternionów,

Pomiary, Automatyka, Kontrola, Nr 7, str. 668-690, 2010.
[18] Cariow A., Cariowa G., A unified approach for developing rationalized algorithms for hypercomplex number multiplication. Przegląd

Elektrotechniczny, ISSN 0033-2097, R. 91 NR 2/2015, pp. 36-39. doi:10.15199/48.2015.02.09
[19] Granata J., Conner M., and Tolimieri R., The tensor product: A mathematical programming language for FFTs and other fast DSP

operations, IEEE Signal Process. Mag., vol. 9, no. 1, pp. 40–48, Jan. 1992.
[20] Steeb W.-H., Hardy Y., Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra, World

Scientific Publishing Company; 2 edition, 2011.
[21] Cariow A., A simple and practical approach to development of the fast algorithms for matrix-vector multiplication. In 2019 Signal

Processing Symposium (SPSympo), 17-19 September 2019, Krakow, Poland, DOI: 10.1109/SPS.2019.8882008.

