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On the multiplications of pure quaternions 

 

Mnożenie czystych kwaternionów 
 
 

Abstract. The need to multiply quaternions when at least one quaternion is pure arises in the number of applications related to information 
processing. In this case, different situations may arise. It may turn out that the multiplicand is a vector quaternion, and the multiplier is an ordinary 
quaternion. Another problem is when the multiplicand is an ordinary quaternion, and the multiplier is a vector one. Finally, a situation may arise 
where both factors are pure quaternions. In all three cases, the number of real multiplications can be reduced compared to the number of real 
multiplications required to compute the product of ordinary quaternions. The article discusses algorithmic solutions that allow reducing the number of 
real multiplications when calculating quaternion products in each of the mentioned cases.  

 
Streszczenie. Potrzeba mnożenia kwaternionów, gdy przynajmniej jeden kwaternion jest czysty, pojawia się w wielu zastosowaniach związanych z 
przetwarzaniem informacji. W tym przypadku mogą wystąpić różne sytuacje. Może się okazać, że mnożna jest kwaternionem wektorowym, a 
mnożnik jest kwaternionem zwykłym. Innym problemem jest sytuacja, gdy mnożna jest kwaternionem zwykłym, a mnożnik jest kwaternionem 
wektorowym. Wreszcie może wystąpić sytuacja, w której oba czynniki są kwaternionami czystymi. We wszystkich trzech przypadkach liczba 
rzeczywistych mnożeń może zostać zmniejszona w porównaniu z liczbą rzeczywistych mnożeń wymaganych do obliczenia iloczynu kwaternionów 
zwykłych. W artykule omówiono rozwiązania algorytmiczne, które pozwalają na zmniejszenie liczby rzeczywistych mnożeń podczas obliczania 
iloczynów kwaternionów w każdym z wymienionych przypadków. 
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Introduction 
Currently, hypercomplex numbers, in particular 

quaternions [1], are used to solve data processing problems 
in various fields of science and technology. This concerns 
such fields as electrical engineering [2, 3], mechanics [4], 
robotics [5-7], machine vision [8, 9], computer graphics and 
animation [10-12], digital signal processing and image 
processing [13], neural networks [14], and many others [15]. 

It should be noted, however, that quaternion-valued 
arithmetic operations are, in one way or another, reduced to 
performing operations with real numbers. Among other 
arithmetic operations on quaternions, the most expensive 
operation is the operation of their multiplication. The 
quaternion multiplication is performed in quaternion-valued 
filtering for color-edge detection and image smoothing [13]. 
The quaternion principal component analysis [13] and 
quaternion convolution [14] also use the quaternion 
multiplication. In [2, 3] electrical single and three-phase 
quantities such as voltage, current, impedance, and power 
are defined as quaternions, and the multiplication of 
quaternions is used in the electrical context. 

 The computational complexity of quaternion-valued 
arithmetic operations is because to perform just one 
addition of quaternions, 4 operations of addition of real 
numbers are required, and the quaternion multiplier 
requires 16 operations of multiplication and 12 operations of 
addition. It is also known that among arithmetic operations 
on real data, multiplication is also the most time-intensive 
operation [16]. To reduce computation time, in [17,18] 
authors proposed algorithms with a minimum number of 
multiplications [17,18]. However, it turns out that if at least 
one of the quaternion-valued factors is a pure quaternion, 
the number of real multiplications can be further reduced. 
Below we propose algorithmic solutions that require the 
fewest number of arithmetic operations when calculating the 
product of quaternions if at least one quaternion is pure. 

 
Preliminaries 

A quaternion can be defined as 

0 1 2 3u u u i u j u k= + + + , where 0 1 2 3, , ,u u u u R , R  is a 

real number field, and i , j , k  are basic imaginary units 

satisfying the following multiplication relations [1]: 

2 2 2
1i j k= = = − , ij ji k= − = , jk kj i= − = , 

ki ik j= − = . 

We would like to immediately make it clear that since 
the multiplication of quaternions is non-commutative, we will 
use the left-sided product for the sake of certainty. The 
right-sided product can be rationalized similarly.  

Typically the quaternions are multiplied similarly to the 
multiplying the polynomials. 

If 0 1 2 3u u u i u j u k= + + + , and 0 1 2 3x x x i x j x k= + + +  

are quaternions, then the product ux  is expressed as 

follows  

(1)         

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

0 1 1 0 2 3 3 2

0 2 1 3 2 0 3 1

0 3 1 2 2 1 3 0

( )( )

( )

( )

( )

( ) .

ux u u i u j u k x x i x j x k

u x u x u x u x

u x u x u x u x i

u x u x u x u x j

u x u x u x u x k

= + + + + + +

= − − −

+ + + −

+ − + +

+ + − +

 

Applying (1) requires 16 multiplications and 12 additions 
of real numbers. In [17] a more efficient algorithm for 
calculating the product of two quaternions with reduced 
multiplicative complexity is proposed. Using this algorithm 
the two quaternions can be multiplied using 8 multiplications 
and 28 additions of real numbers. In the general case, this 
algorithm additionally requires performing 8 shifts. However, 
if at least one quaternion in the product is pure, the number 
of real multiplications can be reduced. Let us consider this 
possibility in more detail. 

The following notations are used below [19-20]:  NI  is 

an order N identity matrix; 2H  is a 2×2 Hadamard matrix;  

is the Kronecker product of two matrices;  is the direct 
sum of two matrices. 
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Algorithm for the multiplying an ordinary quaternion by 
a pure quaternion 

If 0 1 2 3x x x i x j x k= + + +  is an ordinary quaternion, and  

1 2 3u u i u j u k= + +  is a pure quaternion ( 0 0u = ), then the 

multiplying x  by u  as polynomials is given by expression 

(2)  
1 2 3 0 1 2 3

1 1 2 2 3 3 1 0 2 3 3 2

1 3 2 0 3 1 1 2 2 1 3 0

( )( )

( ) ( )

( ) ( ) .

ux u i u j u k x x i x j x k

u x u x u x u x u x u x i

u x u x u x j u x u x u x k

= + + + + +

= − − − + + −

+ − + + + − +

  

The computation of the expression (2) requires 12 
multiplications and 11 additions of real numbers. Below we 
show the derivation of an algorithmic solution characterized 
by lower multiplicative complexity. If we express the 
ordinary quaternion x  and pure quaternion u  in matrix 

notation then the following expression is obtained:  

4 1 4 4 1 =Y U X , 

where  
T

4 1 0 1 2 3[ , , , ]y y y y =Y , 
T

4 1 0 1 2 3[ , , , ]x x x x =X ,  

1 2 3

1 3 2
4

2 3 1

3 2 1

0

0

0

0

u u u

u u u

u u u

u u u

− − − 
 

−
 =
 −
 

− 

U . 

After altering the sign of the first row of the matrix 4U , 

the obtained matrix 
( )
4
a

U  was decomposed as 

(3)    
( ) ( ) ( )
4 4 4
a b c
= −U U U , 

where 

1 2 3

1 3 2( )
4

2 3 1

3 2 1

0

0

0

0

b

u u u

u u u

u u u

u u u

 
 
 =
 
 
 

U , 3( )
4

1

2

0 0 0 0

0 0 2 0

0 0 0 2

0 2 0 0

c u

u

u

 
 
 =
 
 
 

U . 

Comparison with the matrix templates from [21] shows 

that the matrix 
( )
4
b

U  matches the pattern 
2 2

2 2

 
 
 

A B

B A
, 

where  
1

2
1

0

0

u

u

 
=  
 

A , 
2 3

2
3 2

u u

u u

 
=  
 

B . 

Then we obtain the factorization 

(4)  
( )

( ) ( ) ( )

( )
2 24

2 2 2 2 2 2

1/ 2

.

b
= 

 +  −   

U H I

A B A B H I
  

The resulting matrices match the pattern 
a b

b a

 
 
 

, 

where 2a u= , 1 3b u u= +  for matrix 2 2+A B , and 

2a u= − , 1 3b u u= −  for the matrix 2 2−A B . Therefore, 

2 2+A B  is factorized as  

(5) ( ) ( ) ( ) ( )2 2 2 2 2 21/ 2 a b a b+ =  +  −   A B H I H I .               

The matrix 2 2−A B  is decomposed similarly. 

Taking into account the product  

( )( ) T
4 1 3 1 2 0 2 3 14 0, 2 , 2 , 2 [ , , , ]

c
diag u u u x x x x =U X , 

and the expressions (3), (4), and (5), we obtain the 
following factorization of the quaternion matrix: 

(6) 
(2) (0) (0) (1)

4 1 4 7 7 7 4 4 17 7 7 7   =Y W W W D W W W X ,  

where 

( )7 0 1 2 3 4 5 6, , , , , , ,diag s s s s s s s=D  

( )0 1 2 3 / 4s u u u= + + , ( )1 2 1 3 / 4s u u u= − − , 

( )2 2 1 3 / 4s u u u= − + − ; ( )3 2 1 3 / 4s u u u= − − + ; 

4 32s u= ; 5 12s u= ; 6 22s u= ; 

( )(1)
2 2 37 =  W H I P ; 3

0 1 0

0 0 1

1 0 0

 
 

=
 
  

P ; 

( )(2)
2 2 37 =  W H I I ; (0)

2 2 37 =  W H H I ; 

T

7 4

1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



 
 
 =
 
 
 

W ; 

4 7

1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



− 
 

−
 =
 −
 

− 

W . 

Based on the resulting factorization (6) of the quaternion 
matrix, the algorithm for multiplying an ordinary quaternion 
by a pure quaternion is shown by the data flow graph in 
Figure 1. It illustrates the space-time structure of the 
developed algorithm. The data flow graph is oriented from 
right to left, and the straight lines denote the data transfer 
operations. The dashed lines determine the data transfer 
operations by simultaneously altering the sign. Nodes with 
the connected lines define summations, and nodes with the 
diverged lines mean data transfer. Circles denote 
multiplications.  

 

 
Fig. 1. Data flow graph of the algorithm for multiplying an ordinary 
quaternion by a pure quaternion 
 

Now we will construct an algorithm for calculating the 

coefficients 0s , 1s , 2s , 3s . In matrix notation, we obtain the 

expression  

0s

1s

2s

3s

4s

5s

6s

0x

1x

2x

3x

0y

1y

2y

3y
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4 1 4 3 3 1  =S W U , ( )
T

4 1 0 1 2 3, , ,s s s s =S ,

T
3 1 1 2 3[ , , ]u u u =U , 4 3

1 1 1̀

1 1 11

1 1 14

1 1 1



 
 
− −
 =
 − −
 
− − 

W . 

Having decomposed the matrix 4 3W  we obtain  

(0)
4 1 3 3 14 31/ 4 =S W W U , 

where 3

1 0 1

0 1 0

1 0 1

 
 

=
 
 − 

W . 

The algorithm for the calculation of the coefficients 0s , 

1s , 2s , 3s  of the multiplying an ordinary quaternion by a 

pure quaternion is presented in the data flow graph in 
Figure 2. We are able to reduce the number of additions 
from 8 to 6 compared to the calculation of these  
coefficients using the expression (6). 

 
Fig. 2. The data flow graph for the calculation of the coefficients for 
multiplying an ordinary quaternion by a pure quaternion 
 

From here on it is easy to see that the algorithms we 
synthesize contain multiplications by powers of two. These 
are the so-called trivial multiplications since they are 
reduced to simple shift operations. Some researchers do 
not even take these operations into account when 
calculating the total number of mathematical operations 
required to implement the algorithms. However, for the sake 
of completeness, we will still take them into account.  

So, in general, the algorithm requires 7 multiplications, 
25 additions, four double right shifts, and three left shifts. 
However, if the quaternion u , as is often the case, has 

constant coefficients, then the number of additions is 
reduced to 19, and the shifts disappear altogether. 

 
Algorithm for the multiplying a pure quaternion by an 
ordinary quaternion 

Let 0 1 2 3u u u i u j u k= + + +  be an ordinary quaternion,  

1 2 3x x i x j x k= + +  be a pure quaternion ( 0 0x = ). The 

multiplying x  by u as polynomials is given as  

(7)            

0 1 2 3 1 2 3

1 1 2 2 3 3 0 1 2 3 3 2

0 2 1 3 3 1 0 3 1 2 2 1

( )( )

( ) ( )

( ) ( ) .

ux u u i u j u k x i x j x k

u x u x u x u x u x u x i

u x u x u x j u x u x u x k

= + + + + +

= − − − + + −

+ − + + + −

    

As one can be seen, the computation of the expression 
(7) requires 12 multiplications and 11 additions of real 
numbers. We show the derivation of an algorithmic solution 
characterized by lower multiplicative complexity. If we 
express the ordinary quaternion u  and pure quaternion x  

in matrix notation then the following expression is obtained:  

4 1 4 3 3 1  =Y U X , 

where 

T
3 1 1 2 3[ , , ]x x x =X , 

1 2 3

0 3 2
4 3

3 0 1

2 1 0

u u u

u u u

u u u

u u u



− − − 
 

−
 =
 −
 
− 

U . 

Next, we alter the sign of the first row of the matrix 

4 3U . The obtained matrix 
( )
4 3
a
U  can be decomposed as 

(8)   
( ) ( ) ( )
4 3 4 3 4 3
a b c
  = −U U U , 

where 

1 2 3

0 3 2( )
4 3

3 0 1

2 1 0

b

u u u

u u u

u u u

u u u



 
 
 =
 
 
 

U , 3( )
4 3

1

2

0 0 0

0 2 0

0 0 2

2 0 0

c u

u

u



 
 
 =
 
 
 

U . 

 

It should be said that it is difficult to find a successful 

factorization for the matrix 
( )
4 3
b
U . However, we can 

artificially supplement it with a column of the following type 

T
0 1 2 3[ , , , ]u u u u . As a  result, we obtain the matrix 

0 1 2 3

1 0 3 2( )
4

2 3 0 1

3 2 1 0

d

u u u u

u u u u

u u u u

u u u u

 
 
 =
 
 
 

U , 

which can be factorized instead of the matrix 
( )
4 3
b
U . The 

matrix obtained in this way can be easily factorized [17] 
using decompositions (4) and (5), Then, considering that for 

pure quaternion 0 0x = , the resulting decomposition and 

data flow graph can be corrected.  Then, taking into account 
the fact that the resulting decomposition, as well as the 
algorithm graph, can be corrected.    

Based on the expressions (4)-(6) and (8) we obtain the 
following factorization of the quaternion matrix: 

(9) 
(2) (0) ( ) (0) (1)

4 1 4 7 7 3 3 17 7 7 7 7
a

   =Y W W W D W W W X , 

where ( )( )
7 8 9 10 4 5 67 , , , , , , ,

a
diag s s s s s s s=D  

( )7 0 1 2 3 / 4s u u u u= + + + ; ( )8 0 2 1 3 / 4s u u u u= + − − ; 

( )9 0 2 1 3 / 4s u u u u= − + − ; ( )10 0 2 1 3 / 4s u u u u= − − + ; 

T

7 3

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1



 
 

=
 
  

W , 

and the matrices 4 7W , 
(0)
7W , 

(1)
7W , 

(2)
7W  and 

coefficients 4s , 5s , 6s  are defined in (6). 

 
The algorithm for multiplying a pure quaternion by a 

regular quaternion, based on the obtained factorization (9) 
of the quaternion matrix, is shown by the data flow graph in 
Figure 3.  

41

41

41

41

1u

2u

0s

1s

2s

3s3u
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Fig. 3. Data flow graph of the algorithm of the multiplying a pure 
quaternion by an ordinary quaternion 
 

Let synthesize the algorithm to calculate the coefficients 

7s , 8s , 9s , 10s . In matrix notation we obtain the expression  

( )
4 4 14 1

a
 =S W U , ( )

T( )
7 8 9 104 1 , , ,

a
s s s s =S , 

T
4 1 0 1 2 3[ , , , ]u u u u =U , 4

1 1 1 1̀

1 1 1 11

1 1 1 14

1 1 1 1

 
 

− −
 =
 − −
 

− − 

W . 

The matrix 4W  matches the pattern 
2 2

2 2

 
 

− 

H H

H H
, and 

we give 

( ) (1) (0)
4 14 1 4 41/ 4

a
 =S W W U , 

where 
(1)

2 24 = W H H , 
(0)

2 24 = W H I . 

The algorithm for the calculation of the coefficients 7s , 

8s , 9s , 10s  during the multiplying a pure quaternion by an 

ordinary quaternion is presented in the data flow graph in 
Figure 4.  

 
Fig. 4. The data flow graph for the calculation of the coefficients for 
the multiplying a pure quaternion by an ordinary quaternion 
 

The algorithm requires 7 multiplications, 25 additions, 
four double right shifts and three left shifts. However, if the 
quaternion u, as is often the case, has constant coefficients, 
then the number of additions is reduced to 19, and the shifts 
disappear altogether. 
 
Algorithm for the multiplying two pure quaternions 

If 1 2 3u u i u j u k= + +  and 1 2 3x x i x j x k= + +  are pure 

quaternions, then the multiplying x  by u  as polynomials is 

given by expression 

(10) 

1 2 3 1 2 3

1 1 2 2 3 3 2 3 3 2

3 1 1 3 1 2 2 1

( )( )

( ) ( )

( ) ( ) .

ux u i u j u k x i x j x k

u x u x u x u x u x i

u x u x j u x u x k

= + + + +

= − − − + −

+ − + + −

 

Calculating the product (10) requires 9 multiplications 
and 5 additions of real numbers. We can show a solution 
that requires fewer operations. If we represent the 
multiplication of pure quaternions u  and x  in matrix 

notation, we obtain the following expression:  

( )
4 1 3 14 3

d
 =Y U X , 

where  

1 2 3

3 2( )
4 3

3 1

2 1

0

0

0

d

u u u

u u

u u

u u



− − − 
 

−
 =
 −
 
− 

U . 

If we change the sign of the first row of the matrix 
( )
4 3
d
U  

then the obtained matrix 
( )
4 3
e
U  can be decomposed as 

(11)  
( ) ( ) ( )
4 3 4 3 4 3
e f c
  = −U U U , 

where 
( )
4 3
c
U  is defined in (8),  and 

1 2 3

3 2( )
4 3

3 1

2 1

0

0

0

f

u u u

u u

u u

u u



 
 
 =
 
 
 

U . 

It should be said that it is also difficult to find a 

successful factorization for matrix 
( )
4 3
f
U . However, we can 

artificially supplement it with a column of the following type 

T
1 2 3[0, , , ]u u u . As a result, we obtain the matrix 

( )
4
b

U . This 

matrix can be factorized instead of the matrix 
( )
4 3
f
U , using 

expressions (4), (5). Then, taking into account the fact that 

for pure quaternion 0 0x = , the resulting decomposition, as 

well as the data flow graph, can be corrected.   
Further, based on the expressions (4)-(6) and (9), (11) 

we obtain the following factorization of the quaternion 
matrix: 

(12) 
(2) (0) (0) (1)

4 1 4 7 7 7 3 3 17 7 7 7   =Y W W W D W W W X , 

where 7D ,
(0)
7W , 

(1)
7W , 

(2)
7W  are defined as in (6), and 

7 3W  is determined as in (9). 

Applying the factorization (12) of the quaternion matrix, 
the algorithm for multiplying two pure quaternions can be 
presented by data flow graph in Figure 3 where 

0s , 1s , 2s , 3s  are used as multipliers instead of the 7s , 8s , 

9s , 10s . The data flow graph for computing the coefficients 

0s , 1s , 2s , 3s  was shown in Figure 2. 

As in the previous case, the algorithm requires 7 
multiplications, 25 additions, four double right shift 
operations, and three left shifts. If the quaternion u is a 
constant quaternion, then the number of additions is also 
reduced to 17, and shifts are not required. 
 
Discussion of the computational complexity and 
verification of the obtained solutions 

The tables below present estimates of the number of 
arithmetic operations required to calculate a product of 
quaternions. The cases of multiplication of two ordinary 

41

41

41

41

1u

2u

7s

8s

9s

10s3u

0u

7s

8s

9s

10s

4s

5s

6s

1x

2x

3x

0y

1y

2y

3y
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quaternions (a well-known algorithm) are considered, as 
well as new algorithmic solutions concerning the calculation 
of products when one or both quaternions are pure 
quaternions. Table 1 summarizes estimates regarding 
schoolbook methods for calculating quaternion products. 
Table 2 presents the estimates of the proposed algorithms 
for multiplying quaternions with variable coefficients, and 
Table 3 presents the estimates of the same algorithms for 
the case when the coefficients of the quaternion u  are 

constant numbers. 
An experimental study of the correctness of the 

proposed algorithms was implemented using the MATLAB 
R2023b software. For this purpose, fifty 4D vectors with 
normally distributed elements with zero mean and unit 
variance were generated. The resulting vectors were 
presented as quaternions. Then, the products of ordinary 
and pure quaternions, pure and ordinary quaternions, and 
the product of two pure quaternions were calculated using 
matrix-vector products. In addition, calculations were 
implemented with quaternion matrices factorized using 
expressions (6), (9), and (12). The results were found to 
match, indicating the correctness of the developed 
algorithms. In addition, the correctness of the proposed 
data flow graphs for the constructed algorithms was 
checked on the same generated 4D random vectors. The 
corresponding quaternions were multiplied first as usual 
matrix-vector products, and then using data flow graphs. 
The coincidence of the results showed the correctness of 
the data flow graphs for the proposed algorithms. 

 
Table 1. The number of operations in schoolbook methods for the 
quaternion multiplying 

Quaternion product:  Multiplications Additions Shifts 

ordinary × ordinary 16 12 - 

ordinary × pure  12 11 - 

pure × ordinary 12 11 - 

pure × pure 9 5 - 

 

Table 2. The number of operations for the proposed quaternion 
multiplying algorithms 

Quaternion product:  Multiplications Additions Shifts 

ordinary × ordinary [17] 8 28 8 

ordinary × pure  7 25 7 

pure × ordinary 7 25 7 

pure × pure 7 25 7 

 
Table 3. The number of operations for quaternion multiplication 
algorithms in the case where quaternion u  is a “constant” 

quaternion 

Quaternion product:  Multiplications Additions Shifts 

ordinary × ordinary [17] 8 20 4 

ordinary × pure  7 19 4 

pure × ordinary 7 17 4 

pure × pure 7 17 4 

 
Conclusions 

The paper presents new algorithms for calculating the 
product of two quaternions, assuming that at least one 
quaternion is pure. Even compared to the best fast 
quaternion multiplication algorithm [17], we save one real 
multiplication. This may seem like a small thing, but it is 
important too. Unfortunately, the number of real additions 
has increased. However, as already noted, a common 
situation is when one of the quaternions (in our case, u ) 

has constant number coefficients. In this case, the number 
of additions is reduced. In cases where the multiplication 
operation is more costly than the addition operation, the 
resulting solutions become especially useful. The noted 
advantages of the developed algorithms allow us to assume 
their practical suitability for solving applied problems in 
various fields of science and technology. 
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