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Introduction
Sensorless control has become increasingly popular in 

recent decades for enhancing the reliability and reducing the 
cost of electric drives. Key components of this approach in-
clude the electrical machine, control strategy, and state ob-
server. By eliminating the need for physical sensors, systems 
can be more dependable and cost–effective [1‒2].

The utilization of induction motors is widespread in many 
industrial applications because they have many advantages, 
such as excellent durability, low cost, minimal maintenance, 
and exceptional robustness [1‒2‒3]. However, asynchronous 
machine is also a complex system, with nonlinear, coupled 
and time–varying dynamics, and some of its state variables 
are not directly measurable, this poses additional problems 
for the control, diagnosis and monitoring of this machine [4]. 
In most industrial applications, speed control of induction mo-
tor drives is required. Linear system theory has some limita-
tions for controlling induction motors, especially in transient 
regimes [7]. Nonlinear pre–compensation is an effective ap-
proach for commanding induction motors based on lineariza-
tion technique, but it neglects the nonlinear part of the system 
[7‒8]. Scalar control is a classical technique for variable speed 
control, but it only provides basic performance [5]. A more so-
phisticated technique is Field Oriented Control (FOC), which 
was proposed by Blaschke and Hasse in 1972 [6,7]. FOC 
makes the induction motor behave like a DC motor by inde-
pendently controlling the flux and the torque in a rotating ref-
erence frame. However, FOC is sensitive to motor parameter 
variations and external load disturbances, especially the rotor 
resistance variation, which affects the flux orientation angle 
and the decoupling [6,7]. To address these issues and achieve 
high performance of this machine, several nonlinear control 
methods have been developed and applied in both simulation 
and practice. Among these strategies, input–output lineariza-
tion control, it is a nonlinear control strategy, that gained trac-
tion for transforming complex nonlinear motor dynamics into 

linear equivalents via state feedback, enabling the application 
of linear control techniques, it simplifies IM dynamics by de-
coupling nonlinear interactions, enabling precise speed and 
torque tracking [8‒9], sliding mode control [9], flatness control 
[11‒12], passivity control [13] and adaptive methods [14‒15] 
to solve the problem of time varying parameters, Backstep-
ping and Integral Backstepping control [16‒19]. As mentioned 
above, Backstepping control is a nonlinear strategy, widely 
used in a wide range of nonlinear systems and which provides 
overall stabilization, on the other hand, it performs well even in 
the presence of variability. This technique is mainly based on 
the use of the Lyapunov function [16]. Backstepping control is 
a nonlinear control technique that has been widely studied and 
applied to nonlinear systems [16]. It was introduced in 1991 by 
Petar Kokotovic and colleagues. It offers good performance in 
transient and relatively in steady state regimes, and it is more 
resistant to parameter variations and load torque disturbanc-
es. However, it has a limitation in steady state regime, as it 
relies on a proportional derivative that causes a static error 
[19]. This technique is based on Lyapunov stability tools. To 
improve the robustness of Backstepping control and eliminate 
residual errors, a modified Backstepping control with integral 
action can be used [20‒21]. By choosing a suitable Lyapu-
nov function, the integral Backstepping strategy can ensure 
the stability of the entire system when controlling induction 
motors [20]. The major benefits of this control technique are 
good tracking references and robustness under parametric 
variation constraints [21].

In this paper the robustness of speed, flux and torque 
ξ_1=1/j T_e controllers have all been enhanced by integrat-
ing new integral terms for an induction motor, reducing the 
impact of rotor resistance variation and load torque distur-
bance. However, like with all nonlinear control methods, ac-
curate and reliable knowledge of the system’s numerous state 
variables is essential. Utilizing state observers in this situa-
tion becomes a necessary course of action.
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It should be noted that a state observer is a dynamic sys-
tem that may observe the non–measurable state variables 
from the measurements of the system’s inputs and outputs 
that are currently available. This software sensor is crucial for 
control, as well as for system monitoring, predictive mainte-
nance, diagnostics, and fault–tolerant control strategies.The 
non–measurable state variables of the induction motor have 
been estimated in recent years using a variety of estimating 
techniques. The extended Kalman filter [21], a stochastic re-
cursive estimating algorithm for nonlinear systems, is one of 
these methods. The simplicity and widespread application 
of this filter in the observation domain are its main driving 
forces. Without sacrificing the accuracy of the estimate, the 
nonlinear Luenberger observer is distinguished by its inherent 
simplicity when compared to the other approaches [23]. Due 
to its simplicity of use, excellent stability, less computational 
effort, and outstanding effectiveness, the MRAS observer 
(System, Adaptive Reference Model) has been quite popular 
in Sensorless induction motor control applications [24]. The 
advantage of the sliding mode observer (SM) [25] is that it is 
unaffected by changes in the rotor time constant (parameters 
of the machine). The block triangular constructions, sensitiv-
ity to measurement disturbances, and the destabilizing im-
pact of the peaking phenomena (significant fluctuation in the 
transient response) are however some of their disadvantag-
es. Based on the circle criterion, the nonlinear observer that 
introduced by Arckak and Kokotovich [26], allows to handle 
the nonlinearities directly and with less restrictive assump-
tions than the linearization and high gain methods [27‒30].

This work presents a combination study between the ob-
server based on the circle criterion and integral Backstep-
ping control scheme applied to the induction motor, which is 
motivated by the attributes of the observers and control ap-
proaches mentioned above.

In summary, the novelty of this paper lies in the innova-
tive integration of robust Integral Backstepping control with 
advanced state observers (particularly the circle criterion ob-
server). This integration enhances the robustness of the mo-
tor’s performance in the presence of parameter variations, 
such as rotor resistance changes, and external load distur-
bances. This approach provides a more effective solution to 
the challenges faced in sensorless control and monitoring of 
induction motors.

This paper is structured as follows: Part two introduces 
the nonlinear model of the induction motor. Section three 
presents the design of the integral Backstepping speed and 
norm of flux controllers. Section four describes the circle cri-
terion observer. In section five we recall the Backstepping 
control technique. finally we end with a simulation and inter-
pretation of the results which allows us to give a conclusion 
to this work.

Non–Linear Modeling of Induction Motor
In the reference frame of the stator fixed (α–β) axis, the 

nonlinear model of the IM introduced in this work is given 
as follows

(1)	

(2)	

We note that the stator currents, rotor flux, and rotor an-
gular velocity are the state variables and the measurable vec-
tor components are the currents si α  and si β . The controller 
vector T
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Where:

The following notations are introduced in order to simplify the 
mathematical equation forms:.

�  
 
 
 
�  
 
 
(5)	

The following notations are introduced in order to simplify 
the mathematical equation forms: 
, 

Flux  and Speed Integral Backstepping Controller 
Develop

Command Aim
Command’s objective is to create a virtual command 

(suitable functions) that will facilitate a challenging nonlinear 
control dilemma. By dividing the control design into multiple 
steps, the process has been simplified. Each stage focuses 
on a particular input–output structure issue and serves as 
a model for the following stage. The ELF is employed in-
crementally to maintain global system stability and keeping 
track goals [22].
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Step One
The desired tracks that the system must follow must 

be identified in this step. The controllers must also be de-
signed to foster the best following accuracy. Rotor speed 
and rotor flux have reference trajectories that are defined by 

.
The inaccuracy in velocity tracking error  and the rotor 

flux modulus following the error may be commanded with the 
help of the auxiliary variables  and  respectively:

Following errors. are defined as follows:

(6)	

(7)	

With	

Their dynamics equations are given by:

(8)	

(9)	

The virtual command expressions are provided as fol-
lows:

(10)	

(11)	

Expressions corresponding to Equation (8) and (9) can 
be derived as follows:

(12)	

(13)	

The evaluation of stability for the tracking error dynamics 
relies on the subsequent Control Lyapunov Function (CLF):

(14)	

The theoretical expression corresponding to Equation 
(15) represents the derivative of Equation (14).

(15)	

The selection of the derivative error tracking has been 
made as below:

(16)	

(17)	

The minus sign associated with Equations (16) and (17) in-
dicates that the Lyapunov function is negatively defined. Con-
sequently, under these circumstances, the virtual command 
derived from expressions (12) and (13) can be expressed as 
follows:

(18)	

(19)	

k1 and k3 are positive gains that define the closed loop dy-
namics’.

The Lyapunov Function’s time–varying derivative is cer-
tainly less than zero. Then the following errors  and  can 
reach a steady state regime.

We want to use the integral action to control the speed 
and flux of the system, but we cannot directly change the vari-
ables  and  because they have their dynamics. Therefore, 
we introduce the virtual controls  and  to make sure the 
speed and norm of flux loops are stable. The dynamics of the 
following errors are given by:

(20)	

(21)	

Let  and  are positive gains and let  
 be the integral actions that are defined by the tracking 

error. By adding them to the virtual control, we guarantee that 
the error will converge to zero in steady state.

Step two
The goal of the command is to make the secondary varia-

ble  follow  and  follow . The final references are made 
to guarantee stable dynamics for tracking errors related to 
velocity and flux modulus. It is crucial to think about the er-
rors between them for the virtual controls.

The consideration of errors between them is crucial for 
virtual commands. The objective command becomes: oblige 
the secondary variable  to follow  while  has to follow .

Let’s specify the following errors in order to do this:

(22)	

(23)	

The time derivative of (22) and (23) gives:

(24)	

(25)	

newly developed expressions (24) and (25) in function of new 
terms  and  are given as follows:

(26)	



191PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025

(27)	

From (24) and (25 It has become possible to obtain novel 
formulations of error dynamics.

(28)	

(29)	

Where

	  
 
 
	

Equations (28) and (29) demonstrate that the control term 
is a part of the error dynamics formula. Therefore, it is clear 
how the extended Lyapunov function is evident. This function 
can be seen in Relation (30).

(30)	

When we compute equation (30)’s derivative, we get:

(31)	  
 
 
	  
 
	

Where  and  are the positive constant that determine the 
closed loop’s dynamics.

Finding the following expression will guarantee that the 
CLF derivative is semi–negative definite:

(32)	

The selection of the voltage control is as follows:

(33)	

(34)	

As a result, the following control expressions are pro-
vided:

(35)	

(36)	

Nonlinear Observer Using the Circle Criteria Method
The structure of the nonlinear observer that utilizes the 

circle criterion adopted in this study to estimate the rotor’s 
flux and speed is the focus of this section. Arcak and Koko-
tovic came up with the first version of this observer [21] [19]. 

It works for continuous systems that can be split into linear 
and nonlinear parts, as long as the nonlinearities meet the 
sector property [21]. The advantage of this approach is to 
treat system nonlinearities with less restrictive conditions 
[25] [26], [27] [28]. The essential theory and theorems used 
in the design of the nonlinear observer are illustrated as the 
following [21‒23, 30].

The nonlinear model (1) – (2) of the IM can be rewritten as:

(37)	

(38)	

Where:
 is the state matrix,  is the ouput of the system 

and  is the control vector. A, C, and N are assumed 
to be known constant matrices with appropriate dimensions 
provided that the system must be observable.

In addition,  is a random real–valued vec-
tor that solely depends on the inputs and outputs of system, 

 and  respectively. The last term of the system (37) 
 which is a vector function that varies over time, thus 

confirming the sector property represents the mathematical 
model of the nonlinear part of the system. We note that  
and  are locally Lipchitz.

A primary restriction stating that the nonlinear observer’s 
function is a non–decreasing function (.)φ  is a requirement 
for its structure.

This restriction means that:

	

With:
( , )tφ η  is a nonlinearity function.

(39) 	 If ηξζ =−  and 

such as  is claimed to relate to the 
sector [0[ ∞+  if .

The previous equation is also equal to the following if 
),( tηϕ  is a continuously differentiable function. [23, 24]:

 
(40) 	

According to these restrictions, the observer will there-
fore be given as follows:

	  
 
(41)	

With: )(ˆ tx and )(ˆ ty are the estimate of the state )(tx and the 
output )(ty  vector respectively.

The state estimation error )(te is computed as a differ-
ence between the state )(tx  and state estimation.

The gain matrices T and K0are determined as part of the 
nonlinear observer dynamic.
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In order to carry out the previous observer, the main the-
orem and the conditions used in this work are recalled while 
adhering to the sector property as follows:

Theorem 1: In accordance with [25], [28], if we take into 
consideration a nonlinear system described by equations (37) 
and (38) with the nonlinear part satisfying the equations of 
the circle criterion provided by equations (39) and (40). Ex-
istance of an ensemble of row vectors pRK ∈0 and a sym-
metric, positive definite matrix nxnRS ∈ , must be verify the 
following linear matrix inequalities (LMI) [21], [24]:

(42)	

(43)	

nIQ ε= : Positive gain matrix,
nI : The identity matrix,
ε  : A positive real number.

From equations (41), (42), and (43), how the state obser-
vation error e (t) changes over time can be derived as follows:

	  
 
(44)	

Let )(. txM=ζ , and ))(ˆ)(()(ˆ.. tytyKtxM o −+=ξ
by taking:

)()( teCKM o−=−= ξζη

Equation (10) provides the variations of the state estima-
tion error, which may be viewed as a function of the variable 
and then: ￼ .

Thereafter, taking into consideration the prior outcome, 
the error variations become:

(45)	

(46)	 )()( teCKM o−=η

From equations (45) and (46), we notice that the design 
issue of the nonlinear estimator is similar to the stabilization 
of the dynamics error.

Using a CLF , the stability of the observer error 
variations is investigated.

The time derivative of the Lyapunov function is expressed 
as follows:

(47)	

Equations (45) and (46) can be used to get the derivative 
of the Lyapunov function as follows:

(48)	

And

(49) 	

The derivative of the Lyapunov function can be written 
as follows:

(50)	

The circle criterion has the benefit of handling the sys-
tem’s nonlinearities directly and with less limitation. However, 
this strategy introduces LMI’s limitations.

Simulation findings and discussion
To highlight the benefits of our proposed study, we exam-

ine an IM along with its relevant characteristics, as detailed 
in Table 1. Additionally, the simulation block diagram for the 
nonlinear command, combined with a nonlinear observer for 
the IM model, is depicted in Figure 1. To execute the simula-
tion of our present scheme, two essential steps are involved:

Observation of the State Variable Vector: This step relies 
on input voltages and output currents.

Utilization of observed Variables for control design : We 
utilize the estimated variables to calculate the designed con-
trol strategy.

Table 1: Induction motor parameters

Nomination Definition Numerical Values

Pa Nominal Power 1.5 kW

F Operating frequency 50 Hz

P Pair pole number 220 V

U Supply 4.85 Ω

Rs Stator resistance 3.85 Ω

Rr Stator inductance 0.274 H

Ls Rotor inductance 0.274 H

Lr Stator inductance 0.258 H

M Mutual inductance 0.258 H

ω Rotor angular velocity 148.625 rd/s

J Innertia coefficient 0.0031 Kg2/s

f Friction coefficient 0.00114N .s/rd

Tl Load Torque 5 N.m

Fig. 1. Block diagram model of the suggested Control
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To evaluate the regulation capacity of our controller, we 
carried out the speed trajectory tracking simulation tests. 
A test in acceleration and deceleration mode (trapezoidal) is 
carried out loaded and at reverse speed to observe the per-
formance of this technique during this mode.

For the tracking, we set as admissible trajectory for the 
speed ramps ∓150 rd/s. Figures (2,3, and 4) show the fol-
lowing of the mechanical rotor speed and electromechani-
cal torque), magnetic (flux and its norm) and electrical (cur-
rents) quantities as well as their estimation errors, under the 
integral Backstepping control without sensor using the circu-
lar criterion observer. This tracking is obtained with almost 
perfect performance despite the application of load torque 
and a variable trjectory of speed. Figures (3) show the norm 
flux tracking; the results are given compared with their esti-
mated quantities, returning to this figure we notice that the 
decoupling is ideal between the flux and the torque despite 
the speed profile and the applied load torque. As a concu-
lusion we can say that the simulation results obtained show 
a perfect superposition of the trajectories of the speed and 
flux norm curves, a good tracking of the torque but with some 
peaks caused by the injection of the observer and same for 
the stator currents, while keeping the separation between the 
torque and the flux.

speeds, and when the motor’s rotor resistance is dynamically 
changing. The Simulation findings indicate that the suggested 
control technique achieves high performance and guarantees 
the ideal decoupling of torque and flux, also it shows that the 
observer correctly estimates the non–measurable variables, 
and it presents better performances in terms of, trajectory 
tracking, disturbance rejection, absence of oscillations and 
especially during transient regimes. The CCO can handle the 
system’s nonlinearity directly with less restriction, but it re-
quires solving linear matrix inequalities (LMIs). Experimental 
studies are envisioned as potential directions for future work.

Authors: Abdelhak Benheniche, Electromechanical Department, 
M.B. Ibrahimi University, Bordj Bou Arreridj; QUERE Laboratory, 
Ferhat Abbas University of Sétif; Farid Berrezzek, Fac. Sci& Tec., 
LEER Lab. Univ. Med Cherif Messaadia University, Souk Ahras; 
Fouad Zebiri, Electromechanical Department, M.B. Ibrahimi Uni-
versity, Bordj Bou Arreridj; Ziyad Bouchama, Electromechanical 
Department, M.B. Ibrahimi University, Bordj Bou Arreridj; QUERE 
Laboratory, Ferhat Abbas University of Sétif; Nadjib. Essounbouli, 
Institut Universitaire de Technologie de Troyes.

Fig. 2. Reference, Measured, Estimated and Estimation Error evo-
lution of Rotor speed according to variations.
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Fig. 3. Reference, Real, Observed and Estimation Error of the rotor 
flux norm under variations.
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Fig. 4. Changes in Load, Real and Observed Mechanical Torque.

Conclusion
This manuscript introduces a new control scheme based 

on the Integral Backstepping control strategy (IBC) com-
bined with the circle criterion observer (CCO). We use the 
Lyapunov function to ensure the stability of the global sys-
tem (IM+observer), despite its nonlinearity. The proposed 
technique is tested via simulation under various operating 
conditions of the machine, specifically when the load and 
speed are changing, at constant, increasing, and decreasing 
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