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Orthogonal power of electrical networks with 
periodic voltages and currents – 

a follow-up on Quade‘s geometrical power concept 
 

Moc ortogonalna sieci elektrycznych o okresowych napięciach i prądach –  
kontynuacja koncepcji mocy geometrycznej Quade’a 

 
 

Abstract: The central aspect of this essay, which is a follow-up on my previous article that reviewed the Quade concept for the geometric summation 
of non-active powers, is the introduction of the term „orthogonal power“. This new term for the useless power precisely reflects that its real root cause 
is orthogonality. The term also distinguishes the fundamental Quade concept from other technical definitions. The focus is further on a clear 
understanding of the meaning of total orthogonal and total apparent power of poly-phase networks, thus a reflection on the Quade concept. A new 
graphical representation of powers in vector space is introduced. For the first time we have measured the total orthogonal power of an electric arc 
furnace (EAF) which is a non-linear and dynamic three-phase load. Simulation results are discussed as well. Eventually the geometric summation of 
orthogonal power components is analysed. 

 
Streszczenie: Głównym aspektem niniejszej pracy, która stanowi kontynuację mojego poprzedniego artykułu, w którym dokonano przeglądu koncepcji 
Quade’a z zakresie geometrycznego sumowania nieaktywnej energii, jest wprowadzenie terminu „energia ortogonalna”. Ten nowy termin dla 
bezużytecznej energii pokazuje, że jej rzeczywistą podstawową przyczyną jest ortogonalność. Termin ten także czyni rozróżnienie pomiędzy 
podstawową koncepcją Quade’a a innymi technicznymi definicjami. Uwaga jest następnie skoncentrowana na jasnym zrozumieniu znaczenia 
całkowitej ortogonalnej i całkowitej pozornej energii wielofazowych sieci, a więc rozważań dotyczących koncepcji Quade’a. Wprowadzono nowe 
graficzne przedstawienie energii w przestrzeni wektorowej. Po raz pierwszy dokonano pomiarów ogólnej (czy całkowitej?) energii ortogonalnej  w 
piecu łukowym (EAF), która ma charakter nieliniowy i dynamiczne trzy-fazowe obciążenie. Omówiono także wyniki badań symulacyjnych. Dokonano 
analizy geometrycznego zsumowania komponentów energii ortogonalnej. 
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Introduction 
There is a vast number of publications on power theory. 

Most relevant for the author are the references [1 – 7].  
Concepts are time based [2, 3, 4], frequency based [1, 5] or 
apply instantaneous quantities [6]. But to date it has not been 
commonly recognized that immediately measurable useless 
power of electrical networks with periodic voltages and 
currents is not an algebraic scalar but a geometric vector 
quantity. The time domain geometric concept developed by 
Quade [12 – 15] is general. It contains the sinusoidal complex 

power S = P + jQ and the aggregate power 𝑆Σ−𝑎𝑔𝑔 defined in 

the German standard DIN 40110-2:2002-11 (similarly IEEE 
1459-2010) as limit cases. 

The fundamental result of the Quade concept should 
have a proper name. That is why the term „orthogonal 
power“ for useless power is introduced here to distinguish it 
from other (technical) non-active power definitions, 
especially in regards poly-phase networks. Note that at the 
two-pole the terms orthogonal and non-active (or reactive in 
the sinusoidal case) have identic meaning and are 
interchangeable. 

In the following the geometric concept that was reviewed 
in [8] is briefly summarized, graphical representations are 
introduced, the meaning is analysed and a first application is 
presented. 
 
Orthogonality at the two-pole 

Orthogonality is the real root cause of useless power in 
electrical networks. Vector space and orthogonality are 
closely linked. Quade‘s method applies vector space to 
determine orthogonal power. 
The periodic current i(t) of a two-pole with periodic voltage 
u(t) and active power P can always be split into the (in 
principle) useful proportional current component 

(1) 𝑖𝑝𝑟𝑜𝑝 = 𝑃 𝑈2⁄ ∙ 𝑢 

and the useless orthogonal current component 

(2) 𝑖𝑜𝑟𝑡ℎ = 𝑖 − 𝑖𝑝𝑟𝑜𝑝 

Due to the orthogonality the RMS are related by 

(3) 𝐼2 = 𝐼𝑝𝑟𝑜𝑝
2 + 𝐼𝑜𝑟𝑡ℎ

2  

Multiplied by the squared two-pole RMS voltage U², the 
generally valid orthogonal power relation of the root mean 
squares results, that defines the apparent power S: 

(4) 𝑈2 ∙ 𝐼2 = 𝑈2 ∙ 𝐼𝑝𝑟𝑜𝑝
2 + 𝑈2 ∙ 𝐼𝑜𝑟𝑡ℎ

2  

 𝑆2 = 𝑃2 + 𝑄𝑜𝑟𝑡ℎ
2  

The active (or proportional) power P is the average of the 
extensive quantity energy and sums algebraically. The 
orthogonal power Qorth is not an average value because the 
oscillation 𝑝𝑜𝑟𝑡ℎ(𝑡) = 𝑢(𝑡) ∙ 𝑖𝑜𝑟𝑡ℎ(𝑡) has average zero due to 
the orthogonality of u(t) and iorth(t). The resolution of a sum 
∑𝑝𝑜𝑟𝑡ℎ−µ(𝑡) requires the superposition of these oscillations 

that interfere typically. The summation problem is solved by 
the geometric summation of orthogonal power vectors and is 
based on a correspondence of periodic voltages and currents 
of equal period but arbitrary curve forms in time domain with 
their vector representations in Euclidean vector space [8]. 
The Quade concept bases further on the fact that every 
active energy can be expressed as the scalar product of two 

vectors [11], concretely: 𝑃 = 𝑈⃗⃗ ∙ 𝐼 . Orthogonality is defined by 
this scalar product, illustrated in figure 1. 
 

 
Fig. 1: Illustration of the scalar product 

P
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P is zero if 𝑈⃗⃗  and 𝐼  are perpendicular and maximal if 𝑈⃗⃗  

and 𝐼  are collinear. Then |𝑈⃗⃗ | ∙ |𝐼 | = |𝑈⃗⃗ ∙ 𝐼 |. In Euclidean ℝ³ 

vector space the vector product 𝑈⃗⃗ × 𝐼  is defined and the 
vectorial orthogonality relation holds: 

(5) |𝑈⃗⃗ |
2
∙ |𝐼 |

2
= (𝑈⃗⃗ ∙ 𝐼 )

2
+ |𝑈⃗⃗ × 𝐼 |

2
 

Because the scalar product represents the active power 
and the product of the magnitudes the apparent power, the 
vector product (more general: wedge product) obviously 

represents the orthogonal power: 𝑄⃗ = 𝑈⃗⃗ × 𝐼  (resp. 𝑄⃗ = 𝑈⃗⃗ ˄𝐼  ), 
illustrated in figure 2. 

 

Fig. 2: Illustration of the vector product 

 
The general geometric concept in multidimensional 

vector space is presented in [9], [10] and shows that 

orthogonal power 𝑄⃗  is a bivector / antisymmetric tensor. 
However, for practical measurement purposes three 

dimensions are sufficient because only sums of scalar 

products 𝑄⃗ µ ∙ 𝑄⃗ 𝜈 need to be evaluated. 

 
Illustration of two-pole powers in vector space 

The here introduced figure 3 (by H. Haase) illustrates the 
relations of two-pole voltage, current and powers in vector 
space. It can be interpreted as follows. 
The magnitudes of the vectors of voltage and current are 
their RMS. The voltage vector lies on the x-axis by 
convention. The current vector lies in the x-y-plane. The 

power factor λ is the cosine of the angle between 𝑈⃗⃗  and 𝐼 , it’s 

magnitude is 𝜆 = |𝑃|/𝑆. 

 

Fig. 3: Two-pole powers in vector space 

 

The magnitude of the axial vector 𝑄⃗ ′ = 𝑈⃗⃗ × 𝐼  is Q‘. 𝑄⃗ ′ is 
determined by the vector product and by the mutual position 

of the vectors 𝑈⃗⃗  and 𝐼 . If the current vector leads or lags the 
voltage vector, can be determined from the fundamental 50 
or 60 Hz oscillations which are measured by digital PQ-
analyzers. With a lagging (inductive) current, the orthogonal 

power vector points in positive z direction (+Q if 𝑈⃗⃗  is turned 

towards 𝐼 , right turn). With leading (capacitive) current, the 
orthogonal power vector points in negative z direction (-Q if 

𝑈⃗⃗  is turned towards 𝐼 , left turn). In case the network is ohmic, 
the orthogonal power vector is zero, P=S and voltage and 
current vectors are collinear, lying on the x-axis. In the purely 
orthogonal case the current vector lies on the ±y-axis and 
P=0. 

The representations of other two-poles (or gates) are 
generally rotated around the x-axis, the orientation of the 

vectors 𝑄⃗ µ
′  lying in the y-z-plane. 

How the magnitudes of active and orthogonal powers 
result geometrically, is depicted in the here introduced figure 
4 (by H. Haase). 

 

Fig. 4: Power magnitudes in vector space 

 

The areas (grey) are the magnitudes of P and 𝑄⃗ . 𝑈⃗⃗  and 𝐼  

lie in the x-y-plane. If 𝐼  is collinear to 𝑈⃗⃗  then Q = 0 and P is 

maximal. If on the other hand 𝐼  is perpendicular to 𝑈⃗⃗  then Q 

is maximal and P = 0. Note that other 𝑈⃗⃗  and 𝐼  pairs lie in 
different planes generally. 
 
Total orthogonal power 

Due to its vector character, the total orthogonal power 

𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 of any electrical network in any periodic condition 
equals the geometric sum of the orthogonal power vectors 

𝑄⃗ µ  of all two-poles or gates (similar to the summation of 

mechanical forces): 

(6) 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 = 𝑄⃗ 1 + 𝑄⃗ 2+. . +𝑄⃗ 𝑛 

This abstract sum of vectors is solved by 

(7) 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡
2 = (𝑄⃗ 1 + 𝑄⃗ 2+. . +𝑄⃗ 𝑛)

2
 

 = 𝑄1
2 + 𝑄2

2+. . +𝑄𝑛
2 + ∑ 𝑄⃗ µ ∙ 𝑄⃗ 𝜈 

that contains the squared magnitudes which are calculated 
with (4) and scalar products that are the interference terms 
(phase information). Remarkably, the scalar products are 
resolved with only immediately measurable voltages and 
currents. Total orthogonal power is measured by [9], [10]: 

(8) 𝑄𝑜𝑟𝑡ℎ−𝑡𝑜𝑡
2 = ∑ ∑ (𝑢µ𝑢𝜈̅̅ ̅̅ ̅̅ ∙ 𝑖µ𝑖𝜈̅̅ ̅̅ ̅ − 𝑢µ𝑖𝜈̅̅ ̅̅ ̅̅ ∙ 𝑖µ𝑢𝜈̅̅ ̅̅ ̅̅ )𝑛−1

𝜈=1
𝑛−1
µ=1  

where (n-1) is the number of independent two-poles (gates), 
µ, ν the conductor numbers 1 to n, iµ, iν the conductor currents, 
uµ, uν measured against the reference conductor (e.g. n) and 

the forms 𝑥µ𝑦𝜈̅̅ ̅̅ ̅̅ =
1

𝑇
∫ 𝑥µ ∙ 𝑦𝜈 𝑑𝑡

𝑇

0
 are averages resp. squared 

RMS. Equation (8) is particularly well suited for the 
measurement of the total orthogonal power at the terminals 
of poly-phase networks. Upon reduction into a single-phase 
condition the result of (8) reduces continuously into the two-
pole orthogonal power equation (4). A poly-phase network in 
purely proportional condition (e.g. ohmic resistor network), 

where 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 = 0, can be asymmetric. There is no real 
„asymmetry non-active power“. Upon transition from non-

sinusoidal to sinusoidal condition the vector quantity 𝑄⃗  
reduces into the imaginary value ±jQ that is summed 
algebraically. 

PΣ and Qorth-tot are orthogonal, so the orthogonality 
relation of the total powers follows naturally: 

(9) 𝑆𝑡𝑜𝑡
2 = 𝑃Σ

2 + 𝑄𝑜𝑟𝑡ℎ−𝑡𝑜𝑡
2  

z

y

xP

Q
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Total apparent power is determined by total orthogonal 
power and not vice versa. 

Concluding, the fundamental orthogonal power concept 
of Quade is characterized by its generality ("↔" means 
continuous transition): 

• poly-phase ↔ single-phase 

• periodic ↔ sinusoidal 

• vector space ↔ complex plane 

Contrarily, other power definitions are characterized by: 

• Aggregate power is a result of the definitions of DIN 
40110-2 and is valid only in one limit condition (IEEE 
1459 similarly). It is the power of the ideally compensated 
poly-phase load. 

• Algebraic summation of non-active power magnitudes is 
as well restricted to limit cases. 

 

Meaning of the total orthogonal power 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 
With his finding that orthogonal power is a geometric 

quantity, Quade has solved the summation problem 
elegantly and generally in time domain. In every electrical 
network with periodic voltages and currents that are 
proportional in every branch, only active power is 

transformed and 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 = 0 . With fixed total apparent 
power the total active power is reduced by orthogonality (per 

branch). The total orthogonal power 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 measured at 
the terminals is a measure for the orthogonality of any 
electrical network with periodic voltages and currents that 
results from 

• time shifted zero crossings of voltage u(t) 
and current i(t) and/or 

• non-sinusoidality (harmonics) and/or 

• discontinuity 
 
Meaning of the total apparent power Stot 

In all electrical networks with periodic voltages and 
currents, single-phase or poly-phase, in symmetric or 
asymmetric, sinusoidal or non-sinusoidal condition, the total 

apparent power 𝑆tot measured at the terminals only states 
that the network is in some orthogonal condition if 𝑆tot > 𝑃Σ, 

so if 𝑄⃗ 𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 > 0. If every branch voltage and current of the 

network are proportional then 𝜆tot = |𝑃Σ| 𝑆tot⁄ = 1. 𝜆tot = 1 is 
also measured for the system network + perfect 
compensation. If the network is in a total orthogonal condition 
then 𝜆tot = 0. Apparent power is not an independent quantity 
but always a consequence of orthogonality, determined via 
(9). Orthogonality does not depend on asymmetry. 

The optimal utilization of the usual energy supply network 
with sinusoidal and symmetric supply voltages results if the 
load is symmetric and proportional (the goal of 

compensation). Then 𝑆Σ−𝑎𝑔𝑔 = 𝑆tot = |𝑃Σ| [8]. Only for this 

limit condition the aggregate power equation can be 
determined with the Lagrange Multiplier method (evaluated 
already by Quade [13]). The German term „Rechtleistung“ for 
aggregate power, literally „right power“, indicates the 
„right“ condition of a poly-phase load connected to a normal 
(the ideal) energy supply network. In asymmetric and/or non-
sinusoidal cases the aggregate power and thus aggregate 
non-active power have no proper meaning, both are 
generally no measurands. 

Exemplarily, the deviations of aggregate and total 
fictitious powers from total apparent power are depicted in 
figure 5 for symmetric sinusoidal supply voltages at 
asymmetric star connected ohmic resistors. The fictitious (or 
virtual) starpoint concept and fictitious powers (index 0) are 
explained in [8] and are part of DIN40110-2 [17]. 

 
Fig. 5: Transition from three-phase to single-phase condition 
in an asymmetric ohmic Y connection 
 

The courses of aggregate power 𝑆Σ−𝑎𝑔𝑔  and fictitious 

total apparent power 𝑆Σ0  differ significantly from total 

apparent power 𝑆tot  and from each other due to the 
asymmetry and due to the ohmic condition. Note that for all 

R2 values 𝑆tot = 𝑃Σ and 𝑄𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 = ±𝑗𝑄12 ± 𝑗𝑄23 = 0. 

𝑆Σ−𝑎𝑔𝑔  is composed of the „fictitious aggregate 

orthogonal power“ and the „fictitious aggregate proportional 
asymmetry power“ according to the rules of DIN40110-2. In 

this ohmic case these components equal 𝑆Σ−𝑎𝑔𝑔/√2 for all R2 

values and would have to be generated by a compensation 
in order to let the network (the load) appear symmetric to the 
supply side. 

𝑆Σ0 differs from 𝑆tot because it results from the sum of 

magnitudes 𝑄10 + 𝑄20 + 𝑄30 only. 
 

Power measurement at an electric arc furnace 
One example for a dynamic and non-sinusoidal three-

phase three-conductor load is the electric arc furnace. Its 
simplified equivalent circuit with primary and secondary side 
voltage measurements is depicted in figure 6 (R is a series 
reactor, T the furnace transformer). The high current system 
of the EAF is always a star connection, the furnace 
transformer’s vector group is typically Dd0. 

 
Fig. 6: Simplified equivalent circuit of AC-EAF 

 
On the HV side the (almost) symmetric supply voltages 

are measured against the „artificial“ starpoint 0‘ of a PT or 
against the fictitious starpoint 0. The difference between 
0‘ and 0 is small for quite symmetric conditions. Thus on the 
HV side an asymmetric condition in the furnace is reflected 
only by the line currents. On the LV side the voltages are 
measured against the „reference“ ground „M“ of the furnace 
vessel that is closest to the inaccessible real starpoint „B“ in 
the steel scrap charge. Thus the powers per phase (per 
electrode) are correctly determined in principle. But the LV 
side voltage measurement is subject to induction by the large 
electrode currents [21]. The real phase voltages uHSµ remain 
unknown and are only approximately measured by the 
„electrode“ voltages uµs-M with unavoidable variable errors in 
magnitude and phase shift which result in up to ≈10% 

0

10

20

30

40

50

60

70

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

AV
A

R2 / Ohm

Single Phase Transition in a resistive Y connection (R1=2 Ω, R3=3 Ω)

Stot = P

S-agg

I1

I2

I3

S0

B

M

u1s-M u2s-M u3s-M

r

1p

2p

3p

uArcµ

u1p-0‘

HV supply side LV side, high current system

1s 2s 3s PE

N

1p 2p 3p PE

N

PE

0‘

u2p-0‘ u3p-0‘









u1p-2p

u3p-2p

1s

2s

3s

HV-PT LV-PT

uHSµ

uT

induction

i2

i1

i3

uR

R T

EAF



PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025                                                                                      45 

deviation from the correct primary side total active power and 
energy. The real arc voltages are not measurable. 

On 12th July 2024 we carried out the first measurement 
of the total orthogonal power since Quade developed his 
concept 1933-1937. The measurement is implemented in our 
BSE-Elarc electrode regulation system for EAF. This system 
measures the LV side „electrode“ voltages uµs-M and typically 
the HV side currents iµ. It regulates the arc parameters such 
that an impedance setpoint and a current setpoint (per phase) 
are kept on average by moving the graphite electrodes 
hydraulically up and down depending on the conditions 
inside the furnace. The typical electrode regulation on the 
market only measures the LV side powers and total energy. 
As mentioned, these are always more or less faulty by 
induction. Therefore our goal was to be the first to implement 
the accurate HV side power measurement. The goal is 
twofold: 1. accurate MW and kWh measurement because 
these are important parameters of each EAF and important 
for the reporting of the regulation system and 2. the first 
measurement of the total orthogonal power, i.e. the first total 
useless power measurement that determines the degree of 
active energy transformation in the load. The implementation 
in our system also shows that it is easy to do. We as well 
intend to be an example for manufacturers of power- and PQ-
measurement devices. 

The 150 t furnace designed by BSE, where we carried out 
the measurement, figure 7, is equipped with a furnace 
transformer of 156 MVA rated power. 

 
Fig. 7: EAF where the total orthogonal power was first measured 

 
Connected in series on the HV side is a reactor with 

onload tap changer. Its additional inductance is required for 
arc stability in scrap melting. In regards arc stability „stable 
melting“ means more sinusoidal condition, „unstable 
melting“ means more non-sinusoidal condition. At the 34.5 
kV substation the EAF is compensated with a Static Var 
Compensation (SVC). The high current system geometry is 
electrically symmetric, having three equal short circuit 
impedances: 
 ZSC1 = (0.32 +j 3.12) mΩ 
 ZSC2 = (0.30 +j 3.10) mΩ 
 ZSC3 = (0.32 +j 3.11) mΩ 

This design is achieved applying the BSE-FNM 
(Farschtschi Network Method) [19] that is especially required 
to properly dimension the high current loop (right upper 
corner in figures 7, 8). This sophisticated and unique field 
simulation is necessary because significant current 
displacements (eddy currents, skin+proximity effects) in the 
large conductors need to be considered accurately to get 
realistic results. Figure 8 depicts the EAF high current system 
of figure 7 simulated with BSE-FNM. 

 
Fig. 8: High current system simulated with BSE-FNM at 67 kA. 
Colours: current density, linear scale 
 

Peculiarities of electric arc furnaces are described in [20, 
21]. The following figure 9 depicts the power trends of the LV 
side of a typical heat consisting of two scrap charges showing 
the dynamical melting behavior with significant variations in 
scrap melting (sample time 2 seconds). 

 
Fig. 9: Measured power trends of one of the heats evaluated 
 

The second half of the second charge is the low variation 
liquid period with molten steel and slag. 

Evaluated are scrap melting periods operated with a 
transformer tap voltage of 1318 V and 68 kA electrode 
currents at reactor tap 1.19 Ω, in total 33 minutes. These 
unsteady periods with partly very non-sinusoidal arc voltages 
and currents result in differences between the fictitious / 
aggregate and the orthogonal power values. 

Exemplarily figure 10 depicts the measured 
„electrode“ voltage u2s-M and a typical scrap melting current 
form. 

 
Fig. 10: Illustrative oscillogram of 50 Hz electrode voltage u2s-M 
(red) and line (arc) current i2 (blue) in scrap melting 



46                                                                                                         PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025 

The „electrode“ voltage is very distorted because it 
includes the arc voltage. 

Figure 11 depicts measured typical arc current and 
primary voltage wave forms during a stable melting period. 
On the primary side the supply voltages (measured against 
the artificial starpoint 0‘) do not contain the arc voltages. 

 

Fig. 11: Illustrative oscillogram of 50 Hz primary voltages u1p-2p, u3p-

2p (red, yellow) and line (arc) currents i1, i3 (dark yellow, green) 

 
Note the variability of the currents and the stability and 

sinusoidality of the compensated supply voltages. 
The total orthogonal power was measured by 

implementing the specialization of equation (8) 

(10) 𝑄𝑜𝑟𝑡ℎ−𝑡𝑜𝑡
2 = 𝑈1𝑝−2𝑝

2 ∙ 𝐼1
2 − 𝑃12

2 + 𝑈3𝑝−2𝑝
2 ∙ 𝐼3

2 − 𝑃32
2  

 +2 ∙
1

𝑇
∫ 𝑢1𝑝−2𝑝 ∙ 𝑢3𝑝−2𝑝𝑑𝑡

𝑇

0
∙
1

𝑇
∫ 𝑖1 ∙ 𝑖3𝑑𝑡

𝑇

0
 

 −2 ∙
1

𝑇
∫ 𝑢1𝑝−2𝑝 ∙ 𝑖3𝑑𝑡

𝑇

0
∙
1

𝑇
∫ 𝑢3𝑝−2𝑝 ∙ 𝑖1𝑑𝑡

𝑇

0
 

for the three-phase three-conductor system with phase 2 as 
the reference conductor. The evaluation results are: 
Total active power 

 𝑃Σ = 𝑃12 + 𝑃32 = 108.5 MW 

Total orthogonal power 

 𝑄orth−tot = 107.1 MVAr 

Total apparent power 

 𝑆tot = √𝑃Σ
2 + 𝑄orth−tot

2 = 152.46 MVA 

At the electric arc furnace the total degree of active energy 
transformation is stated by the total power factor 

 𝜆tot = 108.5 152.46⁄ = 0.712 

Fictitious total non-active power 

 𝑄Σ0′ = 𝑄10′ + 𝑄20′ + 𝑄30′ = 111.7 MVAr 

Fictitious total apparent power 

 𝑆Σ0′ = √𝑃Σ
2 + 𝑄Σ0′

2 = 155.72 MVA 

Supply voltages U1p-2p, U2p-3p, U3p-1p 

 34.39 kV, 34.30 kV, 34.33 kV 

Line currents I1, I2, I3 

 2627 A, 2621 A, 2608 A 

Aggregate power 

 𝑆Σ−𝑎𝑔𝑔 = √1
3⁄ (𝑈1𝑝−2𝑝

2 + 𝑈2𝑝−3𝑝
2 + 𝑈3𝑝−1𝑝

2 ) 

  ∙ √(𝐼1
2 + 𝐼2

2 + 𝐼3
2) = 155.76 MVA 

Aggregate non-active power 

 𝑄Σ−agg = √𝑆Σ−agg
2 − 𝑃Σ

2 = 111.75 MVAr 

The total orthogonal and apparent powers are smaller 
than the total fictitious powers due to the interference terms 
that in this case result mainly from harmonics of the line 
currents. Under these symmetrical conditions the fictitious 
total apparent power almost equals the aggregate power. 
Note that always Stot ≤ SΣ0‘ ≤ SΣ-agg [8]. 
 

Computation of arc furnace power 
EAF are electrically complex aggregates. To determine 

their operating behavior in terms of optimal power input, 
measurements are mandatory. There are so many 
operational influences that all EAF “behave” individually. On 
the other hand some real properties of the system can only 
be found by simulation because not all parameters can be 
measured. Proper assessments require measurement and 
simulation. In particular cases like the determination of the 
short circuit reactances of EAF, a proper simulation is 
superior to a measurement. 

BSE applies a program that computes the EAF powers 
for given setpoints. This is very useful to determine 
projections based on measurements. The program uses an 
empirically proven non-linear phenomenological model for 
the arc voltages that approximates reality sufficiently well. 
Applied are rectangular functions generated with Fourier 
series. The model needs to consider that arc voltage and arc 
current are always in phase. The arcs are non-linear resistors 
with typically asymmetric half waves in one period (→ the 
graph u=f(i) shows hysteresis). The level of harmonics 
generated depends on the arc voltage and current. Larger 
arc voltage and/or less arc current generate more harmonic 
content. Similarly melting on scrap creates more harmonics 
than melting in liquid steel / slag. The EAF high current 
system with arcs is a non-linear, inductively coupled, 
resistive-inductive three-phase load. The electrical 
characteristic of the furnace is dominated by the variable high 
current system reactances (→ harmonics, geometry) and by 
the variable arc resistances. 

The arcs are stable on average (in terms of active power 
input) in scrap melting if the total system reactance (that 
includes a series reactor, the transformer and the high 
current system) is greater than a minimal value. The stability 
characteristic can be simulated with our model. Figure 12 
depicts an example of the computed characteristic course of 
the arc voltage as a function of current. The real arc voltage 
increases until the arc is extinguished when raising the 
electrode up steadily. The voltage 𝑃𝑎𝑟𝑐 𝐼⁄  has got a maximum 
at a certain small current (long arc), depending on the total 
system reactance. The larger harmonic content at smaller 
current indicates arc instability by rapidly decreasing arc 
active power. 

 
Fig. 12: Computed arc stability characteristic 
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In the following example computation results are presented 
for another EAF with asymmetric high current system short 
circuit reactances and the equipment parameters 
Transformer: 21000 / 950 V, 2488 A 
Serial reactor: 0.7 Ω 

Short circuit impedances of the high current system: 
 ZSC1 = (0.33 +j 2.14) mΩ 
 ZSC2 = (0.33 +j 1.80) mΩ 
 ZSC3 = (0.33 +j 2.16) mΩ 

The figures 13 – 16 show the behavior of the total powers 
(including reactor, transformer, high current system, arcs) 
under the condition that the symmetric and sinusoidal supply 
voltages are fixed at 21 kV and the electrode currents 1 and 
2 are fix at 55 kA and current 3 varies from 35 kA to 55 kA. 
Differences between total orthogonal, total fictitious and 
aggregate powers become especially obvious. A 
measurement would give very similar results. For large 
current asymmetry and large harmonic content the 
differences of the powers are greatest (I3 smaller than 50 kA). 
The total power factor PFtot indicates that the degree of 
energy transformation is less with greater harmonic content 
and asymmetry. On the right side of the maximum the power 
factors decrease again due to the increasing total inductive 
load at larger currents (short arcs). The load of circuit loop 12 
remains constant at 
S12 = 21000 V ∙ 2488 kA = 52.248 MVA. 
The load of circuit loop 32 increases linearly with the current 
from S32 = 33.33 MVA to S32 = 52.248 MVA. 
Only for the symmetric and sinusoidal system a meaningful 
total (three-phase) nominal load can be calculated with the 
rated values: 
Srated = 1.732 ∙ 21000 V ∙ 2488 A = 90.494 MVA. 

The actual total apparent power Stot is 90.34 MVA at 
I1=I2=I3=55 kA, indicating the remaining short circuit 
reactance asymmetry and harmonic influence. 

 
Fig. 13: Computed total apparent powers 
 

 
Fig. 14: Computed total orthogonal and non-active powers 
 

 
Fig. 15: Computed total power factors 
 

 
Fig. 16: Computed total active power 

 
There are other interesting system parameters that indicate 
the effect of harmonic content per phase, listed in tables 1 
and 2. 
 
Table 1: Computed EAF parameters at I3 = 35 kA, I1 = I2 = 55 kA 

I3 = 35 kA Ph.1 Ph.2 Ph.3 

Uarc [V] 481 386 627 

Parc / I [V] 428 347 426 

Uarc / (Parc / I) 1.12 1.11 1.47 

Xp / Xsc 1.54 1.36 3.44 

Xp0 / Xsc 1.80 1.16 2.42 

PFp 0.779 0.783 0.647 

PFp0 0.635 0.890 0.784 

 

Table 2: Computed EAF parameters at I1 = I2 = I3 = 55 kA 

I3 = 55 kA Ph.1 Ph.2 Ph.3 

Uarc [V] 491 493 479 

Parc / I [V] 433 434 424 

Uarc / (Parc / I) 1.13 1.14 1.13 

Xp / Xsc 1.51 1.59 1.48 

Xp0 / Xsc 1.26 1.47 1.35 

PFp 0.789 0.798 0.786 

PFp0 0.841 0.815 0.815 

 
Index “p” means primary (HV side), index “0” means fictitious, 
index “sc” means short circuit (no arcs). Note that all relevant 
system impedances need to be included in an assessment. 
The ratio 𝑈𝑎𝑟𝑐/(𝑃𝑎𝑟𝑐 𝐼⁄ ) indicates the degree of non-linearity. 
For a long arc at 35 kA this is significant with a ratio of 1.47. 
For 55 kA the ratio reduces to 1.13. 
The tables also indicate the difference between the real 
phase values that can only be calculated and the fictitious 
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phase values that can be measured. 𝑋𝑝µ/𝑋𝑠𝑐µ is the ratio of 

the total system reactance 𝑋𝑝µ = 𝑄𝑝µ 𝐼µ
2⁄  and the short circuit 

reactance of the high current system per phase. The ratio is 
large for large harmonic content. A value greater than 2 
indicates arc instability (reduced active power). Note also, 
that the measurable fictitious phase reactance ratios 
𝑋𝑝0µ/𝑋𝑠𝑐µ  and fictitious phase power factors PFp0µ differ 

significantly from the real phase values. This can lead to 
wrong assessments and needs to be considered. At 55 kA 
where the system is almost completely symmetric, the PFp0µ 
values are greater than the real PFpµ values, indicating that 
the fictitious supply voltages are sinusoidal and that the PFp0µ 
do not represent the non-sinusoidal load. 
 
General power analysis 

Obviously, the digital power measurement devices used 
today are based on incomplete power definitions because 
only aggregate power and „per phase“ power magnitudes are 
used. The concept of fictitious (virtual) starpoint voltages is 
not implemented. However, only small programming effort 
would be required to improve the situation by implementing 
the total orthogonal and apparent powers for poly-phase 
systems and the fictitious starpoint concept. 

A comprehensive power analysis of the condition of poly-
phase systems is achieved by measuring the 

• Total active power 

• Total orthogonal (and apparent) power: degree of 
orthogonality 

• Active, orthogonal and apparent powers of the (n-1) gates: 
loads, asymmetry 

• Decomposition of the gate apparent powers: harmonic 
power contents of each gate circuit 

 
The fictitious powers are used to determine “per phase” 

values measured against the fictitious starpoint but these 
differ from the real phase values at the load impedances 
except for limit conditions (symmetry, sinusoidality). However, 

the fictitious phase power factors 𝜆µ0 = 𝑃µ0 (𝑈µ0 ∙ 𝐼µ)⁄  

indicate the unnecessary and useless load of the conductors 
of the energy supply with the related orthogonal current 
components iorth-µ0 acc. to equation (2). The aggregate power 
is used (only) for comparison to determine if a poly-phase 
network connected to the (ideal) energy supply grid is 
optimally utilized. Then 
𝑆Σ−𝑎𝑔𝑔 = 𝑆tot = |𝑃Σ|. 

 
Summation of orthogonal power components 

Generally, at the two-pole and thus at each gate of a poly-
phase system a power decomposition is possible. Already 
Quade discussed this [15]. The fundamental (50 or 60 Hz) 
powers are of special interest. The vector character of the 
orthogonal power is universal. It is generally wrong to just 
sum the squares of non-active power components 
algebraically. A comparison of the results of algebraic 
summation with the total two-pole orthogonal power 
illustrates this clearly. 
The two-pole or gate apparent power is decomposed as 
follows [18]: 

(11) 𝑆2 = 𝑈2 ∙ 𝐼2 = (𝑈1
2 + 𝑈𝐻

2) ∙ (𝐼1
2 + 𝐼𝐻

2) 

 𝑆2 = 𝑈1
2𝐼1

2 + 𝑈1
2𝐼𝐻

2 + 𝐼1
2𝑈𝐻

2 + 𝑈𝐻
2𝐼𝐻

2  

 𝑆2 = 𝑆1
2 + 𝐷𝐼

2 + 𝐷𝑈
2 + 𝑆𝐻

2  

D is an apparent power because only unequal order 
harmonics are contained in voltage and current components. 
What does this decomposition mean? 

𝑈1
2𝐼1

2  is the squared fundamental (50 or 60 Hz) apparent 
power. This can contain fundamental active and reactive 
power P1 and Q1: 

(12) 𝑆1
2 = 𝑃1

2 + 𝑄1
2 

𝑈1
2𝐼𝐻

2  is the squared current distortion power: 

(13) 𝐷𝐼
2 = 𝑈1

2 ∙ ∑ 𝐼𝑘
2𝑁

𝑘=2 ,  𝑄𝐼 = 𝐷𝐼,  𝑃𝐼 = 0 

𝐼1
2𝑈𝐻

2  is the squared voltage distortion power: 

(14) 𝐷𝑈
2 = 𝐼1

2 ∙ ∑ 𝑈𝑘
2𝑁

𝑘=2 ,  𝑄𝑈 = 𝐷𝑈,  𝑃𝑈 = 0 

𝐼𝐻
2𝑈𝐻

2  is the squared harmonic apparent power that contains 
all other harmonics of equal and unequal harmonic order: 

(15) 𝑆H
2 = 𝑃H

2 + 𝑄H
2  

The total active power (or proportional power) of the two-pole 
is 

(16) 𝑃 = 𝑃1 + 𝑃H 

The two-pole orthogonal power is 

(17) 𝑄2 = 𝑈2𝐼2 − 𝑃2 ≤ 𝑄𝑠𝑢𝑚
2 = 𝑄1

2 + 𝐷𝐼
2 + 𝐷𝑈

2 + 𝑄𝐻
2  

All non-active power components can be computed 
separately applying the power orthogonality relation (4). 
However, it is wrong to assume that the squares of the non-
active power components generally sum algebraically like 
the apparent power components Sµ, Dµ. The (mathematically) 
correct summation considers the vector character of the 
orthogonal power components and contains the interference 
terms (scalar products): 

(18) 𝑄2 = (𝑄⃗ 1 + 𝐷𝐼 + 𝐷𝑈 + 𝑄⃗ 𝐻)² 

      = 𝑄1
2 + 𝐷𝐼

2 + 𝐷𝑈
2 + 𝑄𝐻

2 + ∑𝑄⃗ µ ∙ 𝑄⃗ 𝜈 

 
The interference terms solved are (the apparent power 

terms DI and DU are treated as orthogonal power vectors): 

(19) ∑ 𝑄⃗ µ ∙ 𝑄⃗ 𝜈 = 2(𝑄⃗ 1 ∙ 𝑄⃗ 𝐼 + 𝑄⃗ 1 ∙ 𝑄⃗ 𝑈 + 𝑄⃗ 1 ∙ 𝑄⃗ 𝐻) 

   +2(𝑄⃗ 𝐼 ∙ 𝑄⃗ 𝑈 + 𝑄⃗ 𝐼 ∙ 𝑄⃗ 𝐻) + 2(𝑄⃗ 𝑈 ∙ 𝑄⃗ 𝐻) 

In general, all interference terms need to be evaluated. 
This is the reason why a power tetrahedron can only be 
generated for special conditions. It does not include the 
interference terms. The power tetrahedron of DIN40110-1 is 
such a special case, where the voltage is rigidly sinusoidal. 
In this special case the summation of the squares of the 
orthogonal resp. apparent power components is correct 
because no equal order harmonics are contained in voltage 
and in harmonic current. 

(20) 𝑆2 = 𝑈1
2 ∙ 𝐼2 = 𝑈1

2𝐼1
2 + 𝑈1

2𝐼𝐻
2 = 𝑆1

2 + 𝐷𝐼
2 

(21) 𝑄2 = 𝑈1
2 ∙ 𝐼2 − 𝑃1

2 = 𝑄1
2 + 𝐷𝐼

2 

The following power tetrahedron results, figure 17. 

 

Fig. 17: Power tetrahedron of DIN 40110-1 

 
It can be determined for each gate of a poly-phase 

network if the gate voltages are purely sinusoidal. Generally 
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this is not the case and then this power tetrahedron is 
meaningless. At a dynamically compensated arc furnace it is 
approximately valid on the high voltage supply side (figure 11 
exemplarily). 

Care is to be taken with current and voltage distortion 
powers. Even if the total orthogonal power is zero, these 
quantities can have values. 

The following simple example computed with a 
spreadsheet, figure 18 and table 3, proves the validity of 
Quade’s concept. Voltage and current are distorted as 
depicted in figure 18. 
 

 
Fig. 18: Distorted two-pole voltage and current, two periods, 
illustrative 

 
The correct orthogonal power from the two-pole power 
orthogonality relation is 

 𝑄 = √𝑈2 ∙ 𝐼2 − 𝑃2 = 0.6893 VAr 

The result from the wrong sum of the squared orthogonal 
resp. apparent power components is 

𝑄𝑠𝑢𝑚 = √𝑄1
2 + 𝐷𝐼

2 + 𝐷𝑈
2 + 𝑄𝐻

2 = 1.017 VAr 

This is too large by a factor 1.475. 
Considering the interference terms in the summation gives 
the correct result: 

𝑄𝑜𝑟𝑡ℎ−𝑡𝑜𝑡 = √𝑄1
2 + 𝐷𝐼

2 + 𝐷𝑈
2 + 𝑄𝐻

2 − 0.5593 = 0.6893 VAr 

 
Conclusion 

The term „orthogonal power“ was introduced to point out 
that orthogonality is the real root cause of useless power of 
single-phase or poly-phase networks (generally of arbitrary 
networks) with periodic voltages and currents. The term also 
distinguishes the result of the Quade concept from other 
technical non-active power definitions and indicates the 
physical relevance and fundamental meaning for every 
electrical network. At the two-pole (single phase system or a 

gate of a poly-phase system) the terms orthogonal power 
and non-active (or reactive) power have identical meaning. 
The measurement and the simulation results discussed point 
out the significant differences between the fundamental 
orthogonal power concept and the other „means to an 
end“ definitions. 
 
Table 3: Results of the computed IEEE two-pole power 
decomposition for figure 18 

Ptwo-pole 1.1893 W 

P1+PH+PI+PU 1.1893 W 

Utwo-pole 1.1719 V 

Itwo-pole 1.1730 A 

Stwo-pole 1.3746 VA 

Qtwo-pole 0.6893 VAr 

ltwo-pole 0.8652  

Interference terms ‒ 0.5593 VAr 

U1 0.9994 V 

I1 0.9997 A 

UH 0.6120 V 

IH 0.6126 A 

S1 0.9990 VA 

P1 0.8649 W 

Q1 0.5000 VAr 

SH 0.3749 VA 

PH 0.3244 W 

QH 0.1880 VAr 

DI 0.6122 VA 

DU 0.6118 VA 

DI² + DU² 0.7490 (VA)² 

PI 0 W 

PU 0 W 
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orthogonal power measurement in the BSE-Elarc regulating 
system. 
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Correction to [8] 

The equation 𝑓 2 ∙ 𝑔 2 − 𝑓 ∙ 𝑔 = |
𝑓 2 𝑓 ∙ 𝑔 

𝑔 ∙ 𝑓 𝑔 2
| ≥ 0 

on page 2, second column, must read: 

 𝑓 2 ∙ 𝑔 2 − (𝑓 ∙ 𝑔 )² = |
𝑓 2 𝑓 ∙ 𝑔 

𝑔 ∙ 𝑓 𝑔 2
| ≥ 0 
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