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Searching for the best optimizer for an automated CAD system
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nie nie powinno przekraczać czterech linijek tekstu. Streszczenie nie powinno przekraczać czterech linijek tekstu. (Wybór procedury optymaliza-
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Introduction
Automated Computer Aided Design (CAD) systems are

currently commonly used in many areas of engineering. Use
of such tools allows to design and prototype final products
with better performance more effectively. One of the cru-
cial components of many CAD systems is an automated op-
timization procedure. We assume here, that the user of such
a system is responsible for general design decisions, and the
system’s role is to find the best parameters for the chosen
design. Such tasks are usually formulated in form of one or
many cost functions and the best values are found in process
of minimization of these functions. Nowadays the most com-
mon choice of cost function minimizer is one of the stochas-
tic algorithms. Such methods are simple to implement, they
search for globally best solution and they may be applied for
practically any cost function: even discontinuous and multi-
modal.

Here we shall present a case study of process of se-
lecting such minimizer for an example CAD system. The
stochastic optimizer will be compared to the deterministic one
in terms of the simplicity, robustness, quality of the results
and speed.

Example CAD system
In the paper we use a CAD system for electromagnetic

flow meter (EFM) design as an illustrative example. In the
EFM externally induced magnetic field B acts on a moving
conducting liquid and creates creating electric field E which
can be measured as a potential difference on the electrodes
e1-e2 situated on the banks (see Fig. 1). It can be shown, that

Fig. 1. An electromagnetic flow meter: principle of operation (left)
and sample shape of the coil (right)

for the proper distribution of the magnetic field B (for example
uniform perpendicular component) the signal can be made
proportional to the total flow [1]. Thus the optimal design of
the EFM is usually formulated as a search for the coil shape.

A dedicated CAD system—Flow Meter Design Tool
(FMDT) [3] is aimed at helping to design and test EFM proto-
types. A designer can use FMDT to manage several alterna-
tive projects, design and optimize coil shapes and test their
performance by numerical simulation.

From our perspective the most interesting part of the
FMDT is the coil designer. It can be divided into two com-
ponents: the pre-designer which helps to propose starting
topology of the coil, and the optimizer which controls the op-
timization routine to calculate the best dimensions for the pro-
posed topology.

To explain the optimization task it is necessary to present
how the coil is described in FMDT. Figure 1 presents a 3D
view of the optimized coil. It can be noticed that the main,
working part of the coil is formed of rectangular blocks. This
assumption comes from the technological requirements for
realization of the designed shape. The designer selects a
basic topology, number of sections, initial lengths and widths
of sections. The initial coil may be evaluated with field simu-
lation to check the magnetic field strength and predict signals
for preselected flow(s).

The optimization task
The following design parameters were used in experi-

ments: widths of all sections, length of the working part, total
depth of the coil and shape (width or height) of the side-to-
side connections. The objective function can be defined in
several ways [2]. We have used a postulate of uniform dis-
tribution of the vertical component of magnetic flux density.
Thus the cost function is defined as

(1) f(d) =
1

N

√∑
N

(By,i − B̄)2,

where d is a vector of the design parameters, N is the num-
ber of control points within the channel, By,i is the vertical
component of magnetic flux density at the i-th node and B̄ is
the desired value of By. The control points are spread on an
uniform lattice grid in the channel.

For experiments analyzed in this paper we have de-
signed a coil for rectangular channel 15 centimeters wide and
11 cm deep. We have assumed, that the controlled part of
the channel is 5 cm long. The internal width of the coil was
16 cm. The working part of the coil contained 20 blocks and
working parts were connected above and below the channel.
The initial width of all blocks was 1 cm. Current density was
set to 1e6 A/m2.

Results of the magnetic field simulation for the initial coil
shape is shown in Fig. 2. The absolute value of By is in the
range of 3.89 mT to 7.223 mT. After optimization process we
would like to obtain possible uniform field close to 7 mT.

We have used test problems with the same initial coils,
but slightly different constraints. We have started with the
initial coil, presented above, and allowed to change the shape
and the total length of the coil. This resulted in 21 design
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Fig. 2. Initial coil (3D view) and By distribution at the central cross-
section of the channel

variables: 20 representing the widths of sections and the last
one representing the length of the working part of the coil.
In the first problem (Problem A) the widths were allowed to
change in range of 1 mm to 3 cm, in the second one (Problem
B) the upper bound was extended to 5 cm. Constraints of the
coil length were the same: from 5.01 to 15 cm.

Experiments with Levenberg-Marquardt algorithm
The deterministic Levenberg-Marquardt (LM) optimizer,

which was used in FMDT, was implemented with help of the
public domain library levmar [4]. The Jacobian of the cost
function was calculated numerically. Two examples of opti-
mized shapes are shown in Fig. 3.

Fig. 3. The results of the deterministic optimization: solution of Prob-
lem A on the left side, Problem B on the right side

Experiments with different starting points (initial shape of
the coil) are illustrated in Fig. 4. It may be noticed, that dif-
ferences in the coil shape are minor, and the resulting field
distributions are as well very similar. In our opinion this vari-
ation originates from numerical calculation of the Jacobian.

Fig. 4. Comparison of results of LM optimizer for Problem A with
different starting points: blue – algorithm started from upper bound,
orange – from the lower bound, yellow – from the midpoint of lower
and upper bounds

Giving more freedom to the optimizer in the Problem
B resulted in a different coil shape (presented in the right
side of Fig. 3) and better (more uniform) distribution of B.
Changes of the starting point resulted in small changes of
the optimal shape. The effect is similar to the on which is
presented in Fig. 4.

Experiments with genetic algorithms
The base for the genetic algorithm optimizer was the

open source library GAlib [5] which contains a set of C++
“genetic” objects. On the basis of these objects the typical
genetic algorithms was implemented. We have used real
coding, roulette wheel selection method and elitism to pre-
serve the best solution found. We have tested generational,
steady-state algorithms and deterministic crowding niching.
On the basis of all conducted experiments (few hundreds of
optimizations) we are not able to say, which version of GA
performs best.

We have experimented with different parameters of the
GA algorithm. It was quite obvious, that the size of popula-
tion can not be small for 21 design variables. For practical
reasons we wanted to keep acceptable (less than 1 hour)
time of solution. This set upper limits for the size of popula-
tion and the numbers of generations. In Fig. 5 the results of
two example experiments are presented. Both results were
obtained in 100 generations of 400-individuals population.

Fig. 5. The results of the genetic optimization of Problem A (left) and
Problem B (right)

Comparison Fig. 3 and Fig. 5 shows clearly, that the ge-
netic optimizer produces much worse results than the deter-
ministic one. All shapes obtained with the genetic algorithm
are less smooth and asymmetric. Change of the GA param-
eters usually leads to a different final result. The GA results
differ much more than solutions obtained with multistart tech-
nique by the Levenberg-Marquardt optimizer. Is can be seen
in Fig. 6 where the results of three different runs of GA solv-
ing the Problem A are compared. One can notice that while

Fig. 6. Comparison of the results of GA optimizer for Problem A
and different GA parameters: : blue – 100 generations of 200 indi-
viduals, orange – 200 generations of 200 individuals, yellow – 100
generations of 400 individuals

width of the upper and lower coil blocks stick to the constrains
(what is similar to the results obtained with the LM optimizer),
the widths of blocks in the inner part of the coil differ quite
substantially. The final result can be improved by using more
generations of bigger populations, but time of computations
is then unbearable. The influence of the population size and
number of generations on the quality of the final result is not
obvious and it is very difficult to propose the minimal values
which will guarantee satisfactory results of optimization. To
illustrate this behavior one can study the results presented
in Fig. 7. It is quite obvious than the result obtained with 50
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Fig. 7. Comparison of the best Problem A coil shapes obtained with
the GA optimizer for different number of generations and same size
of populations. From left to right: 200 individual population running
for 50, 100, 200 generations

generations of 200-individual population is the worst one, but
comparison between the results obtained with 100 and 200
generations is not simple at all. We shall compare them us-
ing field histograms, showing what proportion of the channel
space is covered with the selected values of magnetic flux
density. Such histograms for both discussed solutions are
presented in Fig. 8.

Fig. 8. Comparison of the field histograms for the best coils obtained
with the GA optimizer for different number of generations and same
size of population (200 individuals)

The good histogram should: a) be possibly narrow and
b) exhibit the maximum for the flux density close to the de-
sired value. For the desired value of Byset to 7 mT the solu-
tion obtained with 200 generations could eventually be cho-
sen as the better one, but it is not obvious at all.

Quality of the results
For comparison to the results presented in Fig. 8 let us

show the field histograms for the best coils found by the de-
terministic optimizer, shown in Fig. 9. Comparing these his-
tograms with those in Fig. 8 we can see that the coil found
with the LM optimizer is better.

Fig. 9. Field histograms for the best coils obtained with the LM
optimizer

Histograms presented in Fig. 9 confirm that Problem B,

with more loose constrains, allows us to find a coil which gen-
erates better field. As it could be expected, this better coil will
be also more expensive in terms of production and applica-
tion. Figure 3 shows that this coil needs more wire turns what
causes more material and more feeding power.

Conclusion
Optimal design problem formulated in terms of a cost

function may be solved by a deterministic or by a stochas-
tic algorithm. The former approach is usually faster, but it
requires continuous, differentiable cost function and it can
converge to a local minimum. Stochastic algorithms in the-
ory search for the global minimum and are much more toler-
ant. The minimized cost function may be multimodal and dis-
continuous. However, the biggest disadvantage of stochas-
tic algorithms is their computational burden. In practice they
require thousands of cost-function evaluations what makes
them practically slow, comparing to deterministic methods.
Speed-up of such algorithms can be obtained by reduction
of the population size or number of generations, but this can
seriously decrease the quality of obtained results.

The practical example presented in this paper suggests
that application of the deterministic optimizer should be al-
ways considered. If the cost function is differentiable and its
gradient may be calculated numerically then the implementa-
tion of the deterministic optimizer is not more difficult then the
implementation of the evolutionary one. Moreover the optimal
design will be obtained much faster with the deterministic op-
timizer and its quality will be much better.

Comparison of two example desing problems (A and
B) and their solutions suggests that the optimality criterion
should be forced not only by the field quality, but also by
some additional criteria: costs of production and exploatation
of the device. This, however, needs different, multiobjective
approach to the optimal design.
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