Mathematical modeling and engineering design of multi-level inverter based on selective harmonic elimination

Abstract: SHE is a well-studied alternative to common PWM methods. This work shows how to use a Newton Raphson method to selectively reduce higher or lower order harmonics while preserving the needed fundamental voltage in asymmetrical multilevel inverter. This strategy can be used with any number of levels in asymmetrical multilevel inverter. For example, a 9-level and 27-level asymmetrical multilevel inverter is analyzed in this research, and the optimal angles are determined to eliminate the 3rd, 5th and 7th harmonics for nine level inverter and to eliminate twelve odd harmonics from 3rd harmonic to 25th harmonic for twenty seven level inverter.

Streszczenie. SHE jest dobrze zbadana alternatywą dla popularnych metod PWM. Ta praca pokazuje, jak wykorzystać metodę Newtona-Raphsona do selektywnej redukcji wyższych lub niższych harmonicznych przy jednoczesnym zachowaniu wymaganego napięcia podstawowego w asymetrycznym falowniku wielopoziomowym. Ta strategia może być stosowana z dowolną liczbą poziomów w asymetrycznym falowniku wielopoziomowym. Na przykład w tych badaniach analizowany jest 9-poziomowy i 27-poziomowy asymetryczny wielopoziomowy falownik, a optymalne kąty są określone w celu wyeliminowania 3, 5 i 7 harmonicznej dla 9-poziomowego falownika oraz wyeliminowania 12 nieparzystych harmonicznych od 3 do 25 harmonicznej, harmonicznych dla dwudziestu siedmiu poziomów falownika. (Modelowanie matematyczne i projektowanie inżynierskie wielopoziomowego falownika w oparciu o selektywną eliminację harmonicznych)

Keywords: selective harmonic elimination, THD, 9-level inverter, 27-level inverter.
Słowa kluczowe: selektywna eliminacja harmonicznych, THD, 9-stopniowy przekształtnik

Introduction
In recent years, multilevel inverters have become increasingly popular in high-power applications [1] and in variable-speed drives. It has found their way into a wide range of common applications, including fans, pumps, and other mechanical devices because their current ratings are lower at higher power levels [2]. Multilevel converters are also used in active filters [3].

A variety of multilevel inverter topologies have been investigated and presented [4]. Among them are: neutral point clamped inverters [5], flying capacitors inverters [6], and cascaded inverters [7], the neutral-point-clamped inverter has been widely employed in the industry [8]. The cascaded inverters topology, on the other hand, show several advantages Because e it has more levels and a lower voltage rate, the popular voltage all across motor windings is reduced. [8] In addition this topology is straightforward, and its modular design allows it to be easily expanded to accommodate any number of output voltage levels are possible. The number of switches required in all popular multilevel converter topologies is determined by the output level required [10]. However, as the number of power switches increase, the complexity of the inverter circuit and control increase, as well as the price. Asymmetrical multilevel inverter can be utilized to give a high number of output levels without adding additional power switches [11].

The THD of the output voltage waveform must be kept below the acceptable limits when building an effective multilevel inverter. In order to obtain reduced THD, selective harmonic elimination (SHE) has been extensively researched. [12, 13]. The use of silicon carbide (SiC) switches in the inverter design can produce sinusoidal voltages with decreased total harmonic distortion [14]. Fourier theory is used to analyze the output voltage waveform, which results in a series of nonlinear equations. If these equations have a solution, it indicates the switching angles required for a specific fundamental component and harmonic profile. To solve these sets of equations, iterative approaches such as the Newton-Raphson method have been applied [15]. This approach is derivative-dependent and may result in local optima, careful initial value selection alone ensures conversion [16]. Also, it presents another strategy based on turning the transcendental problem into polynomial equations [17]. To eliminate certain harmonics, the resultant theory is employed to compute the switching angles. However Because the number of inverter levels rises, this technique appears to be undesirable in addition to the degree of the polynomials in the mathematical model which is likely to cause numerical difficulties as well as a significant computing burden.

In this paper, a Newton Raphson technique will be provided. It resolves the same problem in a more simple manner and any number of levels without requiring lengthy analytical expression derivation. Newton Raphson is a search approach that mimics biological evolutionary processes to locate the maximum number of functions. In the literature, there is a few instances of Newton Raphson applications for power electronics [18-21].

Circuit topology
The asymmetrical structure employed in this research refers to the cascaded H-bridge (CHB) inverter structures with unequal dc voltage sources [22],[23]. When compared to the symmetrical CHB topology, this topology has the benefit of fewer power electronic Cascade inverter [25]. This can be accomplished by feeding the cascaded bridge inverter with Different dc voltage sources in a 1:3 ratio for nine -level and 1:3:9 for Twenty Seven -level. The polarity of H-Bridge will be in three statuses, negative, positive or zero depending on the sequence of switching as shown in Fig1

Fig. 1. polarity status of H- Bridge

1. Layth S Salman1, 2. Harith Al-Badrani2
Ninevah University(1,2)
ORCID: 2. 0000-0001-6478-2417
1. Nine Level Asymmetrical CHB

Fig. 2 depicts a 9-level asymmetrical inverter made up of two H-bridge. Each H-bridge composed of four power switches and a different single dc voltage source. By using different switching sequences for each H-bridge, the output voltage HB1 can be equal to Vdc, 0, and -Vdc with suitable switching sequences used for both H-bridges. In contrast, the output voltage HB2 can be set to 3Vdc, 0Vdc, or -3Vdc. As a result, the inverter's output voltage has nine different values: Vdc, 2Vdc, 3Vdc, 4Vdc, 0, -Vdc, -2Vdc, -3Vdc, and -4Vdc, as shown in Table 1.

Table 1. Nine-level inverter output voltage with polarities

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>H-bridge1</th>
<th>H-bridge2</th>
<th>H-bridge3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 VDC</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>3 VDC</td>
<td>Zero</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>2 VDC</td>
<td>Negative</td>
<td>Zero</td>
<td>Positive</td>
</tr>
<tr>
<td>1 VDC</td>
<td>Positive</td>
<td>Zero</td>
<td>Negative</td>
</tr>
<tr>
<td>0 VDC</td>
<td>Zero</td>
<td>Zero</td>
<td>Negative</td>
</tr>
<tr>
<td>-1 VDC</td>
<td>Negative</td>
<td>Zero</td>
<td>Negative</td>
</tr>
<tr>
<td>-2 VDC</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>-3 VDC</td>
<td>Zero</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>-4 VDC</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
</tr>
</tbody>
</table>

2. Twenty Seven Level Asymmetrical CHB

Fig. 3 depicts a Twenty Seven-level asymmetrical CHB inverter made up of three H-bridges; four switches and an unequal single dc voltage source. Using different switching sequences for each H-bridge. The output of HB1 can be equal to Vdc, 0, and -Vdc by using suitable switching sequences for both cells. In contrast, the output of HB2 can be set to 3Vdc, 0Vdc, or -3Vdc and the last output voltage HB3 can be set to 9Vdc to -9Vdc. As a result, the inverter's output voltage has nine different values: Vdc, 2Vdc, 3Vdc, 4Vdc, 5Vdc,…13 Vdc, 0, -Vdc, -2Vdc, -3Vdc….-13 Vdc, as shown in Table 2.

Table 2. Twenty-seven level inverter output voltage with polarities

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>H-bridge1</th>
<th>H-bridge2</th>
<th>H-bridge3</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 VDC</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>12 VDC</td>
<td>Zero</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>11 VDC</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Proposed SHE Modulation

Despite the fact that there are other modulation strategies, the SHE method is extensively used in higher power applications [26]; in both two-level and multilevel inverter topologies. The goal of SHE modulation in this work is to create a staircase waveform with optimum voltage waveform steps in order to eliminate specific order harmonics. For a nine-level inverter, For SHE modulation, the Fourier equation of the inverter output voltage is:

\[
V_{\text{in}(\omega t)} = \sum_{n=1,3,5,7}^{\infty} [\cos(n\theta_1) + \cos(n\theta_2) + \cos(n\theta_3) + \cos(n\theta_4)] + \sin(n\omega t)
\]

Where \(\theta_1-\theta_4 \) are the switching angles in the first quarter waveform at each level and must satisfy the following criteria:

\[\theta_1 < \theta_2 < \theta_3 < \theta_4 < \pi/2 \]

The resulted harmonic equations are as follows:

\[
\cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3) + \cdots + \cos(\theta_{13}) = \frac{13M}{4}
\]

\[
\cos(3\theta_1) + \cos(3\theta_2) + \cos(3\theta_3) + \cdots + \cos(3\theta_{13}) = 0
\]

\[
\cos(5\theta_1) + \cos(5\theta_2) + \cos(5\theta_3) + \cdots + \cos(5\theta_{13}) = 0
\]

\[
\cos(7\theta_1) + \cos(7\theta_2) + \cos(7\theta_3) + \cdots + \cos(7\theta_{13}) = 0
\]

For 27 level For SHE modulation, the Fourier equation of the inverter output voltage is:

\[
V_{\text{in}(\omega t)} = \sum_{n=1,3,5,7,9,11,13,15,17,19,21,23,25} [\cos(n\theta_1) + \cos(n\theta_2) + \cos(n\theta_3) + \cos(n\theta_4)] + \sin(n\omega t)
\]

With the switching angle set from \(\theta_1 \) to \(\theta_{13} \), the condition is the same as in the 9-level SHE modulation approach, where:

\[\theta_1 < \theta_2 < \theta_3 < \theta_4 < \theta_5 < \theta_6 < \theta_7 < \theta_8 < \theta_9 < \theta_{10} < \theta_{11} < \theta_{12} < \theta_{13} < \pi/2 \]

To get the correct switching angles for the selected 27-level asymmetrical CHB inverter, sets of transcendental equations are required. The first equation represents the fundamental voltage, while the second equation is utilized to remove selected low-order harmonics. The resulted harmonic equations are as follows:

\[
\cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3) + \cdots + \cos(\theta_{13}) = 15M
\]

\[
\cos(3\theta_1) + \cos(3\theta_2) + \cos(3\theta_3) + \cdots + \cos(3\theta_{13}) = 0
\]

\[
\cos(5\theta_1) + \cos(5\theta_2) + \cos(5\theta_3) + \cdots + \cos(5\theta_{13}) = \cos(7\theta_1) + \cos(7\theta_2) + \cos(7\theta_3) + \cos(7\theta_{13}) = 0
\]

\[
\cos(9\theta_1) + \cos(9\theta_2) + \cos(9\theta_3) + \cdots + \cos(9\theta_{13}) = 0
\]

\[
\cos(11\theta_1) + \cos(11\theta_2) + \cos(11\theta_3) + \cdots + \cos(11\theta_{13}) = 0
\]

\[
\cos(13\theta_1) + \cos(13\theta_2) + \cos(13\theta_3) + \cdots + \cos(13\theta_{13}) = 0
\]
The Newton Raphson method can be used to solve the sets of nonlinear equations in (1) and (3). One of the quickest iteration algorithms, begins with a reasonable approximation and eventually converges at the zero of the specified set of equations. The switching angles are calculated by using Matlab in this study. The total harmonic distortion (THD) of the set of switching angles is then evaluated in order to choose the best solution.

\[\theta_j = [\theta_1^j, \theta_2^j, \theta_3^j, ..., \theta_N^j] \]

\[F^j = \begin{bmatrix} \cos(\theta_1^j) - \cos(\theta_2^j) + \cdots \pm \cos(\theta_N^j) \\ \cos(3\theta_1^j) - \cos(3\theta_2^j) + \cdots \pm \cos(3\theta_N^j) \\ \cdots \\ \cos(N\theta_1^j) - \cos(N\theta_2^j) + \cdots \pm \cos(N\theta_N^j) \end{bmatrix} \]

\[F(\theta) = F \]

By solving the nonlinear equation using Matlab, the optimum THD of a 9-level CHB inverter which is obtained at switching angles of 7.25°, 21°, 36° and 55.93° for θ1, θ2, θ3 and θ4, respectively, in order to cancel the 3rd, 5th and 7th harmonics, while the optimum THD of a 27-level CHB inverter is obtained at switching angles of 4.25°, 7.27°, 11.75°, 16.2°, 21.35°, 27°, 31.9°, 37.5°, 43.79°, 49.3°, 57.6°, 70.2° and 89.4° for θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12 and θ13, respectively, in order to cancel twelve odd harmonic from 3rd harmonic to 25th harmonic for twenty seven level inverter.

Simulation results

Switching techniques were used to confirm the selected structures. MATLAB/Simulink is used to model both 9-level asymmetrical cascade inverter and Twenty Seven-level asymmetrical cascade inverter topologies. The simulations are run by using a set of switching angles to eliminate specific harmonic contents, as shown in Table 3. The used topology firstly applied for nine-level asymmetrical cascade inverter consists of two Different dc voltage sources, each of which is Vdc and 3Vdc. Figures 6(a) and 6(b) show the inverter output voltage and voltage THD, respectively. The voltage THD of the 9-level CHB inverter is 9.95%, according to simulation data. The harmonic contents of the 3rd, 5th, and 7th harmonics are removed. The same topology is used for Twenty Seven-level asymmetrical cascade inverter consists of three unequal dc voltage sources, each of which is Vdc, 3Vdc and 9Vdc. Figures 6(a) and 6(b) show the inverter output voltage and voltage THD, respectively. The voltage THD of the nine-level cascade inverter is 3.82%, which is lower than the voltage THD of the 9-level cascade inverter, according to simulation data. The harmonic contents of the 3rd, 5th, 7th, 9th, 11th, 13th, 15th, 17th, 19th, 21st, 23rd and 25th harmonics are removed.

Table 3 switching angle for Nine and Twenty seven inverter

<table>
<thead>
<tr>
<th>NO level</th>
<th>Switching angles in degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 level</td>
<td>7.25, 21, 36, 55.93</td>
</tr>
<tr>
<td>27 level</td>
<td>4.25, 7.27, 11.75, 16.2°, 21.35°, 27°, 31.9°, 37.5°, 43.79°, 49.3°, 57.6°, 70.2°, 89.4°</td>
</tr>
</tbody>
</table>
Authors:
Layth S Salman - E-mail: laith.saadi2020@stu.uoneveh.edu.iq, got his B.Sc. degrees from College of Electronics Engineering, Ninevah University, Mosul, Iraq in 2014. Now, he is a M.Sc. student at College of Electronics Engineering, Ninevah University. Harith Al-Badrani - E-mail: harith.mohammed@uoninevah.edu.iq, received the B.Sc and M.Sc. degrees from Northern Technical University, Mosul, Iraq. He got his Ph.D.-Eng. degree in Power Electronics and Electrical Drives at the Department of Electrical Engineering and Computer Science, University of Siegen, Germany in 2018. He worked as Scientific Researcher at University of Siegen from 2015 to 2018. He currently working as a lecturer at College of Electronics Engineering, Ninevah University, Mosul, Iraq.

REFERENCES

To continue, please provide more context or questions about the content. If you need help with a specific aspect of the text, please let me know!