Performance Analysis of Proactive Routing Protocol Based on Different Network Load in Mobile Ad-hoc Network (MANET)

Abstract. Mobile Ad hoc Network (MANET) is a collection of wireless mobile nodes that dynamically form a network temporarily without any support of central administration. Moreover, every node in MANET moves arbitrarily making the multi-hop network topology to change randomly at unpredictable times. Therefore, the routing protocol that able to cope with the dynamic nature of the MANET is needed to maintain the communication data between mobile nodes in the network. This paper presents the performance comparison of OLSR and DSDV protocols based on metrics such as packet delivery ratio, average end-to-end delay, and routing overhead by using the NS-2 simulator. The simulation results show that the performance of DSDV outperformed OLSR protocols in terms of average delay and routing overhead.

Keywords: DSDV; MANET; OLSR; Routing Protocols

Introduction

A mobile ad hoc network (MANET) is a wireless network consists of two or more mobile nodes which communicate to each other without any support of fixed infrastructure or centralized administration [1-7]. These mobile nodes, which are free to move in any directions, and rely on batteries to operate may connect or leave a network at any time without restriction. Basically, this self-organized and self-configured MANET comprises of multiple nodes such as laptops, personal digital assistants (PDAs), smart phones, MP3 players, and digital cameras. This network which can be set up anytime and anywhere is an appropriate network for emergency situation, in which the infrastructure is inadequate or infeasible i.e. in disas trous areas, where an existing infrastructure maybe totally damaged, cause a serious communication breakdown.

Routing protocols is one of the key issues in MANET. It is used to establish and maintain valid routes to allow communicating nodes to transmit and deliver the packets between them. In essence, the routing protocols help nodes or devices to decide in which way to route packets in the network. The process of route packets from source to destination node involves two steps; route selection for the source node and packet delivery to the correct destination. Thus, the routing protocols designed for MANET, should be able to cope with the dynamic nature of the MANET, which are mobile and rapidly changing topologies.

Generally, the routing protocol designed can be classified into two main classifications: proactive and reactive routing protocols depending on whether they keep routes continuously updated or react on demand [7-14]. Proactive protocols i.e. optimized link state routing (OLSR) and destination-sequenced distance vector (DSDV), maintain the network topology information within routing by broadcasting periodic routing updates through the network [11]. Each node maintains routing tables which are consistent and up-to-date holding routing information about every node in the network. Meanwhile, reactive protocols i.e. ad hoc on-demand distance vector (AODV) and dynamic source routing (DSR) maintain the routes to destinations only when they are needed [11]. Thus, each node in the network discovers or maintains a route between source and destination based on demand.

In this paper, OLSR and DSDV routing protocols has been selected to be discussed further. The rest of the paper is organized as follows. Section II briefly reviews about OLSR and DSDV routing protocols. Section III discusses about research methodology used in this paper. Section IV presents the results of comparison performance for OLSR and DSDV. Finally section V concludes the paper with conclusion and future work.

Routing protocols

In general, the routing protocols can be classified into two main categories [15], namely proactive (or table-driven) and reactive (or on-demand) protocols, which depend on whether the routes are being updated either continuously or on demand [13, 16-17]. There are a number of proactive routing protocols used, of which Optimized Link State Routing (OLSR) [18] and destination-sequence distance vector (DSDV) are very popular [19-20]. For reactive routing protocols, Dynamic Source Routing (DSR) [21-22] and Ad Hoc On-demand Distance Vector (AODV) [19, 21] are widely used. The following are the detail descriptions of the commonly used proactive routing protocols used in MANETs.

Optimized Link State Routing Protocol (OLSR)

OLSR [24] is an optimized version of the classical link-state algorithm, where every node broadcasts messages and thus generates heavy overhead traffic. Hence, for optimization, OLSR uses MPRs selection technique to reduce the overhead of packet transmission during the
Essentially, this protocol is based on the improved version of Bellman-Ford algorithm, the improvements of which encompasses all its two-hop neighbors. For example, as shown in Fig. 1, node ‘A’ can select nodes B, C, K and N to be the MPR nodes. Each node will then determine an optimal route (in terms of hops) to every known destination using its topological information (recorded in the topology table and neighboring table) and subsequently store this information in a routing table. Therefore, routes to every destination will be immediately available when data transmission begins [18, 23].

OLSR protocols perform hop-by-hop routing, where each node uses its most recent routing information to route packets, with MPRs covering all nodes (i.e., immediate neighbors) that are two hops away. Essentially, a node uses the control messages called HELLO messages to detect and select its MPRs. In principle, these messages are sent at a certain interval to ensure there is a bidirectional link between the node and its neighbor. Furthermore, nodes broadcast the Topology Control (TC) messages to determine their MPRs. In this case, only the control messages are relayed and exchanged among such MPRs, thus eliminating the need to relay this information to all the entire nodes, with each node maintains its own routing table. By being proactive, the OLSR protocols update and store the information of all routes in the network. Therefore, the routes in the network will always be available when they are needed [24].

Fig 1. Multipoint relays [26]

Destination-Sequenced Distance-Vector (DSDV)

DSDV, which was introduced by C. Perkins and P. Bhagwat [20], is one of the earliest ad hoc routing protocols. Essentially, this protocol is based on the improved version of Bellman-Ford algorithm, the improvements of which include the freedom from loops in routing tables by using sequence numbers [20]. In DSDV, each node periodically transmits routing information to its intermediate neighbors to update a routing table, and the updating of such routes can be either time-driven or event-driven. Each entry in the table contains the destination address, the number of hops to reach the destination, the next hop address, and the sequence number provided by the destination node.

The destination node chooses the shortest path according to the hop count and sequence number such that the route with the highest sequence number will be selected. Once the routes are selected, the destination node then forwards the RREP control messages for route establishment. In order to reduce the amount of overhead transmitted through the network; the routing table can be updated in two ways, namely full dump update and incremental update. For the full dump update, complete information of the routing table is sent to the neighbors by a packet. On the other hand, the incremental update involves only those entries that have changed since the last update, with a packet carrying only the information that has changed since the last full dump. Between the two types of update, the incremental update messages are sent more frequently than that of the full dump packets [20, 23].

Methodology

The simulation was conducted using NS-2 network simulator tool, running on a windows laptop with specifications as listed in Table 1. The simulation was carried out to determine the performances of two commonly used proactive routing protocols, namely OLSR and DSDV. The details of simulation parameters settings to measure the performances are summarized as in Table 2.

![Table 1. Simulation Parameter Settings](image)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols</td>
<td>OLSR, DSDV</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>20</td>
</tr>
<tr>
<td>Simulation Area</td>
<td>600 m * 600 m</td>
</tr>
<tr>
<td>Mobility Model</td>
<td>Random Way Point (RWP)</td>
</tr>
<tr>
<td>Packet Size</td>
<td>512 bytes / packet</td>
</tr>
<tr>
<td>Traffic Type</td>
<td>Constant Bit Rate (CBR)</td>
</tr>
<tr>
<td>Node Energy</td>
<td>10 Joules per node</td>
</tr>
<tr>
<td>Receive Power</td>
<td>300 mV</td>
</tr>
<tr>
<td>Transmit Power</td>
<td>2 Mbps</td>
</tr>
<tr>
<td>Simulation Time</td>
<td>800 mW</td>
</tr>
<tr>
<td>Pause Time</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Mobility Speed</td>
<td>10 m/s</td>
</tr>
<tr>
<td>Packet Rate</td>
<td>10 packets/sec</td>
</tr>
<tr>
<td>Number of Connections</td>
<td>10</td>
</tr>
</tbody>
</table>

To access the merit of a routing protocol, a number of important performance evaluation metrics must be utilized for such assessment. The performance metrics we used for evaluation are as follows:

Packet Delivery Ratio

Packet delivery ratio refers to the ratio of the total number of packets received at the destination node to the total number of packets sent by the source node [25], which is expressed as follows:

\[(1) \quad P = \frac{P_r}{P_s}\]

where: \(P = \) Packet delivery ratio; \(P_r = \) total number of packets received; \(P_s = \) total number of packets sent

Routing Overhead

Routing overhead refers to the total number of control messages (route request messages, route reply messages, and route error messages) transmitted by the source node to the destination node during the route discovery process [25], which can be expressed as follows:

\[(2) \quad RO = (R_{req} + R_{rep} + R_{err})\]
Where: \(R_{O} \) = Routing Overhe; \(R_{req} \) = total number of route request messages; \(R_{err} \) = total number of route error messages.

End-To-End Delay
End-to-end delay refers to the average time taken by a packet to arrive at the destination node from the source node [25], which can be expressed as follows:

\[
AE = \frac{(P_{rt} - P_{st})}{P_{r}}
\]

where: \(AE \) = average end-to-end delay; \(P_{rt} \) = packet receiving time; \(P_{st} \) = packet sending time

Results and Discussions
The simulation results of the performance of OLSR and DSDV routing protocols are presented and discussed as following.

Packet Delivery Ratio
As shown in Fig. 2, the packet delivery ratio of the network decreased significantly when the traffic load connection increased fivefold, with OLSR had a better overall packet delivery ratio than that of DSDV. Moreover, at a higher connection rate, DSDV is less effective routing protocol in terms of packet delivery ratio.

Routing Overhead
Fig. 3 shows the routing overheads of proactive routing protocols based on the connection rate. As shown, OLSR and DSDV had relatively constant amounts of routing overheads at all rates of connection loads. However, in terms of routing overheads, OLSR had the poorest performance compared to DSDV routing protocol.

End-to-End Delay
Fig. 4 shows the average network delays plotted against the connection rates. As depicted, DSDV attained the best performance, as evidenced by its low average network latency for all connection rates compared to OLSR protocol.

