Buck converter topology for fuel cell hybrid vehicles

Abstract. Fuel cell hybrid vehicles are electric vehicles with energy conversion technologies that combine fuel cells and batteries. The Energy Management System is crucial to the fuel cell hybrid system's operation since it lowers the system's hydrogen usage. This study looks into how to best manage the fuel cell hybrid vehicles' connected DC/DC converter topologies. The results of the simulations run in Matlab-Simulink show that the suggested buck converter is efficient and a better option for use in electrical vehicle applications. Due to its lower emissions and increased fuel efficiency, fuel cell-powered hybrid electric vehicles (HEV) are being developed by many automobile firms. Power electronics is the important technology for the development of fuel cells for propulsion. This document details various DC/DC converter topologies that are employed to link HEV motor controllers to fuel cells. The objective is to offer a straightforward and useful boost converter topology with a coordinated control that can simultaneously control both the output voltage and input current. The outcomes of simulations run under various dynamics are used to assess the buck converter's performance.

Streszczenie. Pojazdy hybrydowe z ogniwami paliwowymi są pojazdami elektrycznymi z technologiami konwersji energii, które łączą ogniwa paliwowe i akumulatory. System zarządzania energią ma kluczowe znaczenie dla działania hybrydowego systemu ogniw paliwowych, ponieważ zmienna zużycie wodoru przez system. W badaniu tym zbadano, jak najlepiej zarządzać topologiami połączonych przetwornic DC/DC pojazdów hybrydowych z ogniwami paliwowymi. Wyniki symulacji przeprowadzonych w programie Matlab-Simulink pokazują, że proponowana przetwornica jest wydajna i lepiej nadaje się do zastosowań w pojazdach elektrycznych. Ze względu na niższą emisję i zwiększoną oszczędność paliwa, wiele firm motoryzacyjnych opracowuje hybrydowe pojazdy elektryczne (HEV) napędzane ogniwami paliwowymi. Energoelektronika jest ważną technologią dla rozwoju ogniw paliwowych do napędu. W tym dokumencie wyszczególniono różne topologie przetwornic DC/DC, które są wykorzystywane do łączenia sterowników silników HEV z ogniwami paliwowymi. Celem jest zaoferowanie prostej i użytecznej topologii przetwornicy podwyższającej napięcie ze skoordynowanym sterowaniem, które może jednocześnie kontrolować zarówno napięcie wyjściowe, jak i prąd wejściowy. Wyniki symulacji przeprowadzonych przy różnej dynamice służą do oceny działania przetwornicy buck. (Topologia przetwornicy buck dla pojazdów hybrydowych z ogniwami paliwowymi)

Keywords: Buck converter, DC–DC converter; Fuel cell, Wireless charger; Hybrid vehicles.

Słowa kluczowe: przekształtnik buck, pojazd hybrydowy

Introduction
Air pollution and global warming are thought to be caused by the production of power and transportation. Since the majority of power plants are located outside of cities, traditional gasoline vehicles are thought to be the main source of smoke and other dangerous pollutants in metropolitan areas [1-2]. Every year, traditional automobiles contribute significantly to air pollution. The electrification of transportation is a result of the negative effects of pollution. As a result, the development of electric vehicle technology is a significant and promising answer to this problem [3-4]. This approach leads automakers to change their strategy and increase their investment in the creation of electric drive vehicles.

It is necessary to look into the problems associated with EV penetration because the market for EVs is expanding quickly. As a result, this time, a topic of consideration is the integration of plug-in electric vehicles (PEVs) into the power grid. The majority of consumers require immediate battery charging for their PEVs when they arrive home from work. The distribution transformer would be overloaded, the power quality and reliability of the entire system would decline, and utilities' machines (like three phase induction machines) as well as customers' equipment could potentially be damaged if all batteries started charging at once, assuming that they were in a fully discharged state. Utilities must strengthen their infrastructure for generation, transmission, and distribution in order to resolve these problems. The utilities should also use EVs' smart charging, which permits communication between utilities and vehicles to adjust charging patterns [9], or offer financial incentives for off-peak charging.

The improvement in air quality that electric automobiles may offer to cities is their main advantage. Since pure electric cars don't have exhaust, they don't emit carbon dioxide while they're traveling. As a result, there is considerably less air pollution. [6]

Any road vehicle with the capacity to store electricity in its internal rechargeable battery packs, fuel an electric motor, and assist in tire propulsion utilizing an external power source (such as a wall outlet connected to the power grid) is referred to as a plug-in electric vehicle (PEV). Industry, transit, housing, and commerce are the top four energy-intensive industries in the world. For the United States of America (U. S.), the amounts for each industry in 2017 are as follows: 29%Transportation, 20% domestic, 18% business, 32% industrial, and 1% other [1]. The administrations look for various resources is driven by worries about the decline of fossil fuels and how that will affect global warming. Since transportation accounts for over 30% of global energy consumption, switching from gasoline-powered cars to electric, hydrogen, etc., has gained more attention. The majority of cars used for mobility today consume fossil fuels. It is clear that petroleum accounts for 90% of transportation energy. Therefore, the electrification of transportation may significantly decrease the demand offossil fuels.

The following is how the paper is set up: A review on fuel cell hybrid vehicles and the model of a fuel cell system is proposed in section 2. The Buck DC-DC converter design for the EV-charging system and the modelling of buck converter for EVs charger are the main topic of Section 3. The experimental pulse width modulated (PWM) switching tests, the interface driver card design for the IGBT switches is shown in Section 3. The wireless charging system for EVs is covered in Section 4. Finally, the Section 4 gives the conclusion and suggestions.

Design Fuel Cell Hybrid Vehicles
A mathematical representation of the system reflects both its dynamic and static behavior as well as its attributes. It offers a clear and concrete explanation of the procedures used to operate the system.

Although there are many distinct kinds of fuel cells, they all operate on the same principles. An anode, a cathode, and an electrolyte are required for the operation of a fuel cell. The electrolyte will vary depending on the type of
fuel cell; in fact, fuel cells are grouped according to the type
of electrolyte they employ. Hundreds of separate cells can
make up one fuel cell. A fuel cell’s individual cells are made
up of an electrolyte, an anode, and a cathode. Between the
cathode and the anode, the electrolyte was basically
sandwiched by the cell.

Fig. 1. Vehicle Block Diagram for a Fuel Cell

Model of A Fuel Cell System

A fuel cell is an electrochemical device that produces
direct current power as long as fuel and oxidant are
provided to the anode and cathode, respectively. An un-
 rechargeable battery is a more straightforward way to
define a fuel cell. Fueled by hydrogen, practical fuel cells
presently only produce electricity and water for drinking
[25]. Thus, it is frequently referred to as a “zero emission
engine”. Power management, the fuel processor, the fuel
cell and stack, and other subsystems make up a fuel cell
system. A polymer exchange membrane (PEM) serves as
the electrolyte in the fuel cell design that has the best
chance of success for usage in automobiles. The PEM fuel
cell has the advantage of a low operating temperature of
roughly 80°C.

Fig. 2. Fuel cell power and efficiency vs. hydrogen power [10].

Using an online graph extractor tool, for an accurate
mathematical representation, the mapping between
hydrogen power and net output fuel cell power is extracted.

Fig. 3. Fuel cell flow rate

In all three examples, the stack efficiency of a fuel cell
is presented with the air and fuel consumption of the stack.
Figure 3 shows the many ways in which the FC input
changes as a function of input temperature with assumed
temperature.

Modelling of Buck Converter for EVs Charger

As seen in Figure 4, the DC/DC converter acts as the
conversion interface between the DC bus and the EV
battery in order to achieve energy flow between the
charging station and the battery. The buck converter can be
used for high-power applications and has the benefits of a
straightforward structure, simple control, a small size, few
components, and high conversion efficiency [9].

Consequently, the topological structure of the buck
converter was chosen and designed in this study. The two-
stage charge control approach of constant current first and
subsequently constant voltage is used by the suggested
buck model for EV charging to charge the battery pack.

Fig 4: buck DC/DC converter.

Following are the average values for the current flowing
through the load inductance and transformer leakage
inductance during a half cycle of the forward operating
mode as determined by the operating mode analysis.

\[I_o = \frac{1}{2fL}D(1-D)V_o \]

According to KCL, the dynamic system’s average model is
given by

\[\frac{dV_o}{dt} = \frac{1}{C_o} \left(\frac{V_o}{2I_f} \right) + \frac{1}{RC}V_o \]

The typical output voltage and shifting phase duty can
be characterized as when minor signal disturbances are
introduced and the signal is divided into DC and AC tiny
signal components.

Since here does not exist a high-order term, only the
steady-state DC amount is subtracted from (3), and the
entire system’s AC small-signal equation is calculated as:

\[\frac{d\tilde{V}_o}{dt} = \frac{1}{C_o} \left(\frac{\tilde{V}_o}{2I_f} \right) + \frac{1}{RC}\tilde{V}_o \]

The purpose of the buck converter is to variate the
voltage respectively to the duty cycle of the PWM signal as
control the N-MOSFET attached to the converter. The buck
converter plays also the role of filter because of the inductor
Lb at 500µH and the capacitor Cb at 500µF included in it.

The topology of a buck converter is shown in Figure 5,
with the IGBT losing power and voltage and current passing
through resistor R1 at 100 ohms.

wireless charging system for EVs

The primary subject of discussion in this part will be
the wireless charging system for electric vehicles based on
the concept of wireless power transfer, or WPT. Wireless
Power Transfer is a term that describes the transmission of
electrical energy without the use of cables.

It is possible to send AC energy to batteries and other electrical devices without a physical connection thanks to wireless electricity Transfer, which is equipped to transfer electricity across an air gap.

The primary issue with WPT is how ineffective it is. Therefore, researchers are attempting to increase production using a variety of methods. Traditional WPT encounters problems like frayed cables, power outages, electric sparks, etc. WPT would thus be an excellent treatment [11]. Wireless charging uses the idea of electromagnetic induction to transmit electrical power through the atmosphere as a magnetized field. Inductive charging or cordless magnetic charging are some names for it. [10]. The finished charging circuit for EVs using the induction method is shown in Figure 6.

As shown in Figure 6, the AC supply produces a three-phase voltage at a certain frequency (the network frequency 50/60 HZ), which is then converted to DC voltage by a rectifier circuit. The DC is then converted once more into an amplified AC signal by a high frequency AC inverter. The rationale for the preceding steps is that we need a high frequency for this since the AC supply only provides 50 or 60 HZ (depending on the country network frequency where you are) and we want to transfer power wirelessly. Since the high frequency AC current flows through the primary side of the coils and is alternating because it is an AC current, it naturally produces an alternating magnetic field. The secondary coils connect this magnetic field, which results in an EMF (Electro Motive Force) in accordance with Faraday's law. It is known as inductive power transmission because the secondary coils' induced EMF is brought on by electromagnetic induction. Following its passage via the secondary side, the AC current is once more rectified into a DC current that charges the electric vehicle's battery.

In addition to having a poorer efficiency than plug-in charging, wireless charging will also have a greater ripple if the same buck converter circuits and chopper switching frequency are employed. The plug-in system has an average efficiency of 70%. In comparison, less than 30% of the power is sent through the wireless charging mechanism. Losses in the inverter and the distance D between the coil are to blame for the reduced efficiency of wireless charging.

Conclusion

This study created, investigated, and experimentally validated a DC-DC converter for use in a battery charger that is based on high-voltage IGBT modules. Modeling has been done on a high dc-dc converter. The simulation outcome demonstrates that this converter technology has successfully achieved the maximum output voltage. Moreover, the use of a single switch reduces the voltage stress across the switch. In comparison to conventional dc/dc converter topologies, the suggested converter can increase efficiency with a less number of switches and results in good dependability.

Even if the study presented here is limited to the power element of the suggested converter, analysis and practical verification show that a powerful Buck converter for battery charging, based on a minimal number of modules, is a workable solution. A variable frequency switching control has the power to ensure thermal equilibrium of the IGBT.
modules during the full Buck modes without power reduction.

Authors: Dr. Marwa Ben Slimene, College of Computer Science and Engineering, University of Ha'il, Ha'il, KSA, PO Box 2440. Ha'il - 81451, E-mail: benslimene.marwa@gmail.com;

REFERENCES

