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Comparative performance of POA and GWO-enhanced 
backstepping control for robust 6DOF drone path tracking  

in windy conditions 
 

Porównanie wydajności sterowania backsteppingiem POA i GWO w celu zapewnienia solidnego śledzenia 
ścieżki drona 6DOF w wietrznych warunkach 

 
 

Abstract. This study proposes a comparative framework to enhance drone trajectory tracking under wind disturbances by employing two 
optimization-enhanced Backstepping control strategies. Specifically, we introduce two algorithms: one integrates the Grey Wolf Optimizer (GWO) 
with Backstepping control, and the other combines the Pelican Optimization Algorithm (POA) with Backstepping control. A standard Backstepping 
control model is also evaluated as a baseline. Through a systematic comparison of tracking performance across all three controllers — simple 
Backstepping, GWO-Backstepping, and POA-Backstepping — we demonstrate that POA-Backstepping delivers superior path stability and accuracy, 
particularly in response to wind disturbances. The POA-Backstepping algorithm shows enhanced adaptability, with significantly reduced tracking 
errors and smoother control inputs, establishing it as a highly effective solution for maintaining precision in challenging environmental conditions. 
This research highlights the promise of POA in optimizing drone control systems, ensuring reliable and robust performance in dynamic and 
unpredictable environments 

 
Streszczenie. W niniejszym badaniu proponujemy ramy porównawcze mające na celu zwiększenie precyzji śledzenia trajektorii dronów w 
warunkach zaburzeń wiatru poprzez zastosowanie dwóch strategii sterowania Backstepping wspomaganych optymalizacją. W szczególności 
przedstawiamy dwa algorytmy: pierwszy integruje Grey Wolf Optimizer (GWO) z kontrolą Backstepping, a drugi łączy Pelican Optimization Algorithm 
(POA) z kontrolą Backstepping. Standardowy model kontroli Backstepping również został oceniony jako punkt odniesienia. Poprzez systematyczne 
porównanie wydajności śledzenia dla wszystkich trzech kontrolerów – standardowego Backstepping, GWO-Backstepping i POA-Backstepping – 
wykazujemy, że POA-Backstepping zapewnia lepszą stabilność i dokładność trajektorii, szczególnie w odpowiedzi na zaburzenia wiatru. Algorytm 
POA-Backstepping wykazuje zwiększoną adaptacyjność, z istotnie zmniejszonymi błędami śledzenia i bardziej płynnymi sygnałami sterowania, co 
czyni go wysoce efektywnym rozwiązaniem w utrzymaniu precyzji w trudnych warunkach środowiskowych. Badanie to podkreśla potencjał POA w 
optymalizacji systemów sterowania dronami, zapewniając niezawodną i solidną wydajność w dynamicznych i nieprzewidywalnych warunkach. 
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Introduction 
In the 1990s, the PID controller [1] became foundational 

in UAV control systems, valued for its simplicity and 
reliability in maintaining basic trajectory and stabilization [2]. 
However, as unmanned aerial vehicles (UAVs) advanced in 
complexity, the limitations of PID in addressing nonlinear 
dynamics and time delays became clear, prompting a shift 
in research toward more resilient methodologies. By the 
early 2000s, Sliding Mode Control (SMC) [3] began gaining 
traction due to its robustness against system uncertainties 
and its stability under challenging conditions [4]. To address 
SMC’s vulnerability to high-frequency oscillations, known as 
"chattering," research in the mid-2000s focused on refining 
this method to optimize stability under uncertain conditions 
[5]. With the 2010s came a heightened demand for 
nonlinear control strategies to manage increasingly complex 
UAV dynamics. Among these, Backstepping control [6] 
emerged, allowing engineers to decompose complex 
systems into manageable subsystems for improved 
trajectory tracking accuracy. Simultaneously, Model 
Predictive Control (MPC) gained popularity [7] for its 
predictive capabilities, supporting real-time trajectory 
adjustments in response to disturbances such as wind 
gusts [8]. As UAV applications expanded into outdoor 
environments—particularly for surveillance and delivery—
interest in adaptive control methods intensified by the mid-
2010s [8]. From the late 2010s onward, control research 
expanded to integrate adaptive techniques with classical 
methods like PID and Backstepping, enhancing both 
robustness and tracking precision. Advances in machine 
learning, notably in fuzzy logic [9] and neural networks [10], 
enabled UAVs to adapt dynamically to nonlinearities and 
environmental uncertainties. Fuzzy logic offered real-time 

adjustments [9], while neural networks with reinforcement 
learning allowed autonomous adaptation and control 
strategy refinement [11]. By the early 2020s, optimization 
algorithms such as the Grey Wolf Optimizer (GWO) became 
increasingly popular for enhancing controllers like PID, 
SMC, and Backstepping [12], leading to notable 
improvements in trajectory tracking and resilience to 
environmental disturbances. 

This study pioneers the application of the Pelican 
Optimization Algorithm (POA) in quadcopter control, 
integrating it with the Backstepping approach alongside the 
Grey Wolf Optimizer (GWO) [13] to enhance efficiency and 
robustness under dynamic conditions, particularly in 
response to wind disturbances [14]. As the first work 
globally to employ POA for UAV control, this research 
provides new insights into adaptive control strategies for 
quadcopters, demonstrating the algorithm’s potential for 
optimizing performance in complex, real-world scenarios.  
 
Quadrotor dynamics 

The quadrotor dynamics model in this study is 
structured to comprehensively capture the vehicle's six 
degrees of freedom (6-DOF) in both linear and rotational 
motions. Specifically, this 6-DOF model accounts for the 
quadrotor’s linear displacements along the x, y, and z axes 
and its rotational behaviour through roll, pitch, and yaw 
angles [15][19]. Designed with an X-configuration, the 
quadrotor’s four rotors operate in a counter-balancing 
arrangement: two rotors (M1 and M3) rotate clockwise, 
while the remaining two (M2 and M4) rotate counter way. 
This setup allows for precise control over critical 
manoeuvres, including vertical take-off, landing, and 
directional adjustments [15][16][20]. The model integrates a 
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dual-coordinate system framework to ground its dynamics 
accurately in space. At the core, a local coordinate system 
cantered at the quadrotor’s center of gravity is used for 
relative movement, while a global Earth-Fixed (EF) frame -
aligned with the X, Y, and Z axes- provides a stable 
reference for absolute orientation [15][16]. 

The vehicle’s posture is represented in this global frame 
using Euler angles (φ for roll, θ for pitch, and ψ for yaw), 
along with a rotation matrix 𝑅x𝑦z, which jointly describe its 
3D orientation in space [16][17][21]. 
 
 
(1) 
 
Where: Cs = Cos, and Sin = Sn. 
 

While previous studies [17] primarily focus on 
acceleration in the 6-DOF quadrotor model, they often 
overlook velocity. In response, this research develops a 
nonlinear model that integrates both acceleration and 
velocity vectors for a more precise representation as shown 
in equation 2. Using the Euler-Newton framework, we 
derive nonlinear equations (2, 3, 4 and 5) that describe the 
3D motion of the 6-DOF system. 
 

 
 
 
 
 
 
(2) 
 
 
 
 
 

 
         
Control Methods of System 

This research employs a state-space framework to 
rigorously model the quadrotor's dynamic response, where 
differential equations serve to interconnect system inputs, 
outputs, and state variables. Defined within an inertial 
frame, this approach encapsulates the quadrotor’s state 
vector, supporting the detailed dynamic formulation 
presented in Equation (3). Key inertial coefficients -denoted 

as , , and - wish the inertia is mentioned by ,  and 

, describe fundamental mass properties along the primary 

axes, while  quantifies the rotor's inertia around the z-axis. 
Orientation transfer functions further refine control over 
stability and spatial orientation, enabling adaptive response 
across varying operational conditions [18]. 

 

(3)     

 

Where:  

 And:  

 
A. Backstepping Controller 

Backstepping control is a recursive design method that 
structures the control of a complex system by breaking it 
down into smaller, manageable subsystems. For the 
quadcopter, each subsystem is assigned a specific control 
law, starting with primary elements such as roll, pitch, and 
yaw angles, followed by positional controls in the X, Y, and 
Z axes. Using Lyapunov functions, stability is assessed and 
ensured at each stage, allowing for a comprehensive 
control law that governs the entire system. This layered 
approach enables precise handling of the quadcopter's 
dynamics, making it well-suited for systems with 
nonlinearities and external disturbances. Following this 
framework, equation (2) and based on the work of Bouziane 
G, et al [18], we find:  

(4)      

 

B. Grey Wolf Optimization 
The Grey Wolf Optimization (GWO) Algorithm 

represents a meta-heuristic optimization method introduced 
by Mirjalili et al. in 2014 [23]. Inspired by the hierarchical 
social structure and cooperative hunting techniques of grey 
wolves, GWO mimics their behavior through stages such as 
tracking, encircling, and attacking prey. Wolves are 
organized into ranks -Alpha, Beta, Delta, and Omega- that 
mirror their real-life roles within the pack. This hierarchy is 
integral to the algorithm’s functionality, where the Alpha 
represents the best current solution, with Beta and Delta 
supporting the guidance process [23][24]. The algorithm 
operates through distinct phases: 

• Searching for Prey: Wolves spread out based on the 
positions of Alpha, Beta, and Delta, which diversifies the 
search across the solution space [25]. 

• Encircling the Prey: Using specific equations, each 
wolf’s position is adjusted in relation to the target, 
simulating an encircling behavior. 

• Attacking the Prey: Wolves converge on the prey, 
symbolizing the optimization of the final solution [23]. 
In this research, GWO is used to optimize the 

backstepping control of a quadcopter, aiming to improve its 
tracking precision and resilience against environmental 
disturbances [26][27][28]. The following is the pseudo code 
for GWO algorithm [23]: 
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C. Pelican Optimization Algorithm 

The Pelican Optimization Algorithm (POA) is a nature-
inspired meta-heuristic optimization technique, modeled on 
the cooperative hunting behavior of pelicans. In nature, 
pelicans often hunt in groups, using synchronized 
movements and strategy to locate, encircle, and catch fish. 
POA translates this cooperative strategy into an 
optimization framework by simulating stages of exploration 
and convergence. The algorithm’s “pelicans” represent 
agents in the solution space, dynamically adjusting their 
positions based on both individual and collective 
experiences to locate optimal solutions. The algorithm 
operates in two main stages: 

• Encircle: In this stage, pelicans in the algorithm spread 
out across the search space and adjust their positions to 
“encircle” potential optimal solutions. 

• Catch Fish: Once the solution space is sufficiently 
narrowed, the pelicans converge to capture the optimal 
solution, analogous to the act of catching fish.  
This balance between exploration and exploitation 

enables POA to handle complex, multi-dimensional 
problems effectively, making it applicable in fields requiring 
high precision and adaptability, such as robotics, control 
systems, and engineering optimization.  
 

 
 

Simulation, Results and discussion 
This research investigates the effectiveness of enhanced 

backstepping controllers for precise trajectory tracking in 
drones, comparing a conventional backstepping controller 
with controllers optimized using the Grey Wolf Optimizer 
(GWO) and the Pelican Optimization Algorithm (POA).  

The drone dynamics were modeled and simulated in 
MATLAB 2021a, with initial tests conducted on two distinct 
trajectory paths. To establish a baseline, the performance of 
a standard backstepping controller was first evaluated, and 
then compared to both GWO- and POA-enhanced 
controllers. Table 1 outlines the parameters of the proposed 
quadcopter model, the design specifications for the 
Backstepping controller aimed at ensuring precise trajectory 
tracking, and the configuration adjustments optimized by 
the GWO to minimize disturbance impact to the fullest 
extent. 

Fig. 1. Simulation bloc for 6DOF Quadcopter using backstepping 

controller [18]. 
 

Table 1. Parameters of Quadcopter and Controller 

Type Parameters Units 

X moment of inertia  2.2 x 10-2 kg.m² 

Y moment of inertia  2.2 x 10-2 kg.m² 

Z moment of inertia  4.39 x 10-2 kg.m² 

Distance to center l 2.25 x 10-6 m 

Acceleration Gravity g 9.81 m/s² 

Quad Mass m 0.18 kg 

Drag factor d 1 

Comment Algorithms  Dimension 3 

Grey Wolf Optimization 

Parameters 

Max Wolves 50 

Iteration’s 100 

Pelican Optimization 

Algorithm Parameters 

Max Pelicans 50 

Iteration’s 100 

Upper Bounds 50 

Lower Bounds 1 
 

In the first trajectory test, a conical path in the XY and Z 
axes, the standard backstepping controller exhibited 
significant tracking errors, particularly along the Z-axis 
during the transient phase, as well as in the X and Y axes 
within the first few seconds. The GWO-enhanced controller 
improved tracking precision but still displayed minor errors 
across the Z, X, and Y axes. In contrast, the POA-optimized 
controller demonstrated superior accuracy, closely aligning 
with the reference trajectory across all dimensions. The 
results shown in figure 2 and 3. 

 

Fig. 2. Result of tracking conical path in Z, Y and X axes  
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Fig. 3. 3D Quadcopter Tracking Trajectory: Conical Path  
 

For the second test, which followed a helical path, 
similar trends were observed. As mentioned in following 
figures (Fig 4 and Fig 5) this time, the GWO-enhanced 
controller displayed slightly weaker performance, with minor 
inconsistencies in tracking accuracy. In contrast, the POA-
optimized controller consistently outperformed both the 
standard and GWO-enhanced controllers, demonstrating 
superior adherence to the desired trajectory and greater 
stability throughout the path. 

Fig. 4. Result of tracking helical path in Z, Y and X axes  
 
 

Fig. 5. 3D Quadcopter Tracking Trajectory: Helical Path  
 

In a subsequent phase of the evaluation, wind 
disturbances were introduced as step of 5 at the 30-second 
mark to assess robustness under environmental 
challenges. Across both trajectory paths, the standard 
backstepping controller experienced substantial deviation 
upon the introduction of wind, while the GWO-enhanced 
controller displayed better resilience but still deviated 
slightly. The POA-optimized controller, however, maintained 
close alignment with the reference paths despite the wind 
disturbance, showcasing exceptional robustness in 
trajectory tracking. These results underscore the benefits of 
incorporating POA into the backstepping control framework, 
demonstrating its superior effectiveness compared to both 
the standard and GWO-optimized controllers for managing 
dynamic environmental disturbances and ensuring precise 
trajectory tracking.  

Fig. 6. Quadcopter’s conical path in windy environment 
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Fig. 7. Quadcopter’s Helical path in windy environment 
 

Figures 6, 7, 8, and 9 clearly demonstrate the POA-
optimized controller's superior performance over both the 
standard and GWO-enhanced controllers. In each trajectory 
test, the POA achieves notably higher tracking accuracy, 
minimized error margins, and improved resilience under 
disturbance conditions. The outcomes presented in these 
figures affirm the POA’s effectiveness in significantly 
enhancing trajectory stability and robustness, setting it apart 
as the most reliable control method in dynamic and 
challenging environments 

Fig. 8. 3D tracking path of Quadcopter in windy environment: 
Conical path 

Fig. 9. 3D tracking path of Quadcopter in windy environment: 
Helical path 
 

Conclusion 
In this study, we developed an advanced control 

framework for quadcopter trajectory tracking by evaluating 
the effectiveness of both Grey Wolf Optimizer (GWO)- and 
Pelican Optimization Algorithm (POA)-enhanced 
backstepping controllers. Starting with baseline tests using 
a standard backstepping controller, we observed its 
limitations in tracking accuracy and robustness, particularly 
under external disturbances. The GWO-enhanced controller 
demonstrated improved stability and precision but showed 
minor tracking errors under complex trajectory conditions 
and disturbance scenarios. Our comparative analysis 
highlighted the POA-optimized controller as the superior 
solution, consistently outperforming both the standard and 
GWO-enhanced controllers across all trajectory tests. The 
POA demonstrated robust resilience against wind 
disturbances, minimized error in tracking both conical and 
helical paths, and exhibited exceptional stability, as 
evidenced in Figures 6 through 9. These findings validate 
the POA’s effectiveness in enhancing the backstepping 
control framework, establishing it as the most reliable option 
in complex and dynamic environments. 

Future work will explore advanced control strategies, 
including MPC-backstepping, Neural-MPC, and Neural-
backstepping frameworks, with the aim of further optimizing 
trajectory tracking. Integrating neural networks and model 
predictive control (MPC) promises even greater adaptability 
and precision, potentially yielding new results that push the 
boundaries of UAV control. This research not only confirms 
the POA's current advantages but also lays the groundwork 
for these next-generation methodologies, contributing a 
significant advancement to UAV control systems. 
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