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Introduction
In the papers [2, 9, 5, 6], a description of measurement 

uncertainties in the fuzzy sets model was proposed. In this 
paper, we will demonstrate the application of fuzzy set theory 
using the example of determining the measurement uncer‑
tainty of the magnetic induction of a alternating magnetic field 
with an instrument built in our laboratory. The constructed in‑
strument is not a high‍‑precision device but a measurement 
system built from scratch, in which the components of uncer‑
tainty can be controlled. It is assumed that the standard of the 
magnetic field is a solenoid powered by a sinusoidal voltage 
generator with known voltage, and the system for measuring 
the magnetic field is an inductive type.

In this paper [1, 3, 5] we assume that the error δX is the differ‑
ence between the measurement result X and the true value x0:

(1)	 X = x0 + δX�

In the framework of probabilistic model the measurement 
result X and the error δX can be represented by a random 
variables and in fuzzy model – by fuzzy variables. We as‑
sume that uncertainty U(X) is a measure of error and is equal 
to the parameter of the distribution (probabilistic of fuzzy) of 
variable X. If the true value is a real number, then according 
to (1), adding a real number to a random or fuzzy variable 
does not change the uncertainty:

(2)	 U(X) = U(δX)	

We do not find such definitions in the „Guide to the Ex‑
pression of Uncertainty in Measurement” [1], but we assume 
that they are necessary to explain in the language of prob‑
ability that the standard uncertainty is the standard deviation 
and expanded uncertainty is equal to the radius of the confi‑
dence interval. In the fuzzy sets model, fuzzy uncertainty is 
the radius of the section of the fuzzy set characterizing the 
error at a certain level of possibility α, which corresponds to 
expanded uncertainty at the level p(α)1.

1  The definition of standard uncertainty requires an additivity of 
measure, but in fuzzy sets, the possibility measure is maxitive, 
therefore, it is not possible to define a measure adequate to the 
standard deviation.

Equation (1) describes both single sample measure‑
ments and series of measurements. A single sample meas‑
urement can be described by an interval model, where X 
and δX are intervals with radii equal to the maximum per‑
missible errors. The interval model is equivalent to the as‑
sumption that both the measurement result X and the error 
δX are fuzzy variables with a uniform fuzzy distribution. In 
the framework of a probabilistic model, X and δX are rep‑
resented by random variables, and in a fuzzy model – by 
fuzzy variables. From the definition, the distribution of a 
fuzzy variable is a fuzzy set, therefore equation (1) can be 
written for fuzzy sets. Writing this equation for fuzzy sets 
is equivalent to the equation for adding distributions of ran‑
dom variables.

In the Guide, the division into two methods of determin‑
ing uncertainty is given without justification. In the language 
of probability theory, this means two methods of estimating 
the probability distribution:

A – a posteriori, which involves determining the probabil‑
ity distribution from empirical data using the frequentist in‑
terpretation of probability,

B – a priori, which involves estimating the probability dis‑
tribution based on expert analysis using knowledge of the 
measurement method and the instruments used.

Therefore we assumed that the total error is the sum 
of components A and B: δX = δXA + δXB. The formulas for 
combining uncertainty are based on the rules for deter‑
mining the distribution of the sum of fuzzy variables, which 
means adding fuzzy sets according to Zadeh’s extension 
principle.

In the probabilistic model, the standard uncertainty u(X) 
is equal to the estimator s of the standard deviation of the 
error: u(X) = u(x0 + δX) = s(δX) The expanded uncertainty 
is equal to the radius of the confidence interval Ip (Φ (X)) of 
the estimator Φ(X) of the measured quantity (measurand) 
at the level p:

(3)	 Up (X) = Up (x0 + δX) = rad (Ip (δX))	

In equation (3), we assume that the confidence interval 
does not change when shifting the probability distribution 
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along the X axis and that expanded uncertainty can be de‑
fined through the confidence interval2.

In the fuzzy sets model, we will adopt the following as‑
sumptions:
1.	 The expanded uncertainty at level α is equal to the radi‑

us of the fuzzy set section at level α; to compare with the 
uncertainty in the probabilistic model, we assume that 
the section of the fuzzy set at level α corresponds to the 
radius of the confidence interval at the level3 p = 1 – α,

2.	 Method B for uncertainty assessment involves an a pos-
teriori expert method; to describe such a situation Zadeh 
proposed the theory of fuzzy sets,

3.	 The formulas for combining type A and type B uncertain‑
ties result from the arithmetic of fuzzy sets,

4.	 If we assume that the type B component (in many cases 
it can be identified with the systematic error) is described 
by a uniform membership function within an interval, then 
the fuzzy combined uncertainty is the arithmetic sum of 
the a posteriori and a priori components [7].

Probability to possibility transformation
The basis of uncertainty analysis proposed here us‑

ing the fuzzy sets method is the probability‍‑to‍‑possibility 
transformation described in [6, 5, 9, 8] for type A uncer‑
tainty component.

If we assume that the confidence interval Ip on the p‍‑ level 
is equal to the α‍‑cut of a fuzzy set for p = 1 – α, we obtain the 
relation between the fuzzy set ĀX and the cumulative distri‑
bution function FX of the random variable X.

That is, if:

(4)	 Ip = [AX]1−p	

where Ip is defined as: P(Ip) = p, then the fuzzy set ĀX is given 
by the equation ([6, 5, 9])

(5)	 	

where M(X) is the median of a random variable X and FX 
is the cumulative probabilistic distribution of a random vari‑
able X.

Fuzzy sets derived from this transformation describe the 
components of uncertainty of type A, whereas the equation 
(5) define a fuzzy set of type L − R (for unimodal distributions).

Fuzzy approach to measurement uncertainty, error 
budget

Equation (1) means that all sources of measurement 
inaccuracies are represented by the error δX. The exact 
value is unknown, and the fact of the existence of errors 
is included in the assumption that the error is a random 
variable or a fuzzy variable (the interval model is a case 
of fuzzy sets).

2  In the GUM we find that „the confidence interval can be applied 
only to method A” but we assume that it can also be applied to 
method B; otherwise, the formula for combined uncertainty cannot 
be justified
3  Another relationship between the confidence level and the degree 
of membership requires further research.

The starting point for uncertainty estimation is the er‑
ror budget4. The error budget describes the components 
of the measurement error. If the error has two components: 
δx = δx1 + δx2, then the uncertainty Uα(δx) = Uα(δx1 + δx2) de‑
pends on the distribution of the sum of the fuzzy variables 
δX1 + δX2, and the sum distribution depends on the t-norm 
describing the interaction between these variables.

If these variables are observed as a set of data with a cer‑
tain spread, then by using the probability-to-possibility trans‑
formation, we determine the appropriate membership func‑
tions using the algorithm described in the papers [6, 5, 9]. We 
will summarize this algorithm in the next chapter.

The distribution of the type B error component is deter‑
mined analogously to postulating the probabilistic distribu‑
tion. If the data from the instrument indicates that the maximal 
bound error is ΔX, then the distribution describing this situ‑
ation is a rectangular distribution on the interval [−ΔX,ΔX ].

Calculation of membership function from measurement 
data

Let’s assume we obtain a series of n measurement data 
{x1,…xn}. The transformation described by the formula (5) in 
the discrete case is illustrated by the figure: at each meas‑
uring point below the median, there is a jump of value by .

Determination of the membership function can be de‑
scribed by the following algorithm (fig. 1):
1.	 Sort the measurement data: x1 < . . . < xn.
2.	 For the initial value of x1, we set A (̄x1) = 0.
3.	 Determine Ā(xi) using the recursive formula: For even n, 

i ≤ : Ā(xi+1) = Ā(xi) +  for  < i < n: Ā(xi+1) = Ā(xi) −  . 
For odd n it is analogous.

4.	 For i = n we obtain: Ā(xn) = 0.
5.	 Interpolation between measuring points is done with hori‑

zontal lines, obtaining the step function.
6.	 Since the uncertainty is determined by the radius of the 

α-cut, we have:

(6)	 [Ā]α = [xk(n,α), xn−k(n,α)]	

4  The uncertainty budget used in metrology is a „bag” written with 
many statistical assumptions.

Fig. 1. Empirical estimation of fuzzy set and α-cut in the case n = 9



 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025 149

where {xi}i = 1,n is a sequence of sorted data, and k(n,α) is the 
sequential number of the data forming the left end-points of 
the α-cut (see fig. 1).

(7)	

If the measurand is defined as the average value of the 
data series, then the α-cut of the membership function rep‑
resenting the average value for a particular T-norm should 
be determined. In the fuzzy case, averaging results (as in the 
probabilistic approach) is a narrowing of the distribution. We 
can derive the formula providing the α-cut of the distribution 
ĀAve of the average values:

(8)	

This formula means that in order to determine the α-cut 
of the distribution of average values at level α, it is necessary 
to determine the α-cut of non-averaged values at level  

 (where t is the additive generator of the T-norm).

Measurement system
In the studied system, the measurement of the alternat‑

ing magnetic field is carried out using the measurement of 
voltage on an air coil, i.e., by the induction method [4]. The 
measuring instrument is described by a calibration function 
that describes the relationship between the output voltage 
VOUT and the magnetic induction field B, which in linear ap‑
proximation has the form:

(9)	 VOUT = αB	

where α is calibration parameter. In order to determine the 
calibration parameter α of the measuring instrument, we 
measure, in the system presented in fig. 2, the relation be‑
tween the output voltage VOUT and the generator voltage VG. 
Assuming the linearity of the system, the relationship be‑
tween the output voltage and the generator voltage of the 
calibration system (fig. 2) has the form:

(10)	 VOUT = aVG	

The coefficient α is determined from the measurement 
data of the relationship between the output voltage UOUT and 
the generator voltage UG in the measurement system of the 
calibration setup in fig. 2.

The standard used for calibration is a long solenoid. The 
magnetic field B generated by the generator voltage VG is 

theoretically described by Ampere’s law and approximately 
defines a linear relationship:

(11)	 B = βVG	

where β is a coefficient resulting from the laws of electrody‑
namics. Using the long solenoid approximation, the magnetic 
field B is equal to:

(12)	 	

where N is the number of turns, I is the electric current, l is 
the solenoid length, and n0 =  is the number of turns 
per unit length.

Since the input circuit consists of inductance L and re‑
sistance R, the RMS value of current I is given by I = √ VG 

, which means:

(13)	 	

The voltage on the measuring coil is:  The sig‑
nal amplification system from the measuring coil works as a 
current-to-voltage converter. The measuring coil is a radio 
antenna coil for medium waves with an inductance of L1 = 665 
± 0.005μH, n1 turns and a resistance of R1 = 18.68 ± 0.02Ω. 
The characteristic frequency of the coil fL =  = 4.48 kHz. 
For f > fL, the formula for the output voltage as a function of 
the magnetic flux of the system is:

(14)	

where Rf is the feedback resistance, and S1 is the effective 
area of the measuring coil. This equation is linear (from (18)) 
with the slope coefficient  (9) . For more accu‑
rate measurements, the influence of frequency on the system 
gain should be considered.

Substitute equation (11) into equation (10), we obtain: VOUT 
= αβVG Therefore, the coefficient a of equation (10) is a = 
αβ, so the coefficient α of the field meter calibration curve is:

(15)
	 	

The measuring coil signal amplifier
To derive equation (14), let us consider Kirchhoff’s laws for 

the equivalent circuit shown in figure 2. The voltage induced 
in the measuring coil L is equal to the time derivative of the 
magnetic flux, which in complex numbers is represented by:

Fig. 2. Measuring circuit for calibration of induction field meter Fig. 3. Equivalence scheme, E – measuring coil voltage
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(16)	 E = jn1ωΦ = jωn1S1B	

where ω is the angular frequency, Φ is the magnetic flux, S1 
is the effective surface area of the coil, and n1 is the number 
of coil turns. The equations describing the system take the 
form (with the assumption |IwRw| << |AUd|):

(17)	 	

where: A – open loop gain of operational amplifier. After some 
manipulations we obtain for |A| >> 1:

(18)	 	

In the discussed system, the characteristic frequency is lower 
than the one used for measurements and standardization, so 
an approximate formula (14) for the effective values can be 
used. At low frequencies, to make the amplification independ‑
ent of the frequency, the amplifier circuit needs to be modi‑
fied by using an integrator circuit.

Fuzzy uncertainty analysis
The system is designed so that within a certain frequency 

range, the output voltage is proportional to the magnetic in‑
duction vector. The relative error of the proportionality coef‑
ficient α, according to the formula (15), is:

(19)	 	

The coefficient a is determined by fitting the straight-line 
equation to the measurement data of the calibration system, 
and it is necessary to determine the membership function for 
the slope coefficient resulting from the fuzzy method of linear 
fitting. Unfortunately, in the literature, we did not find suita‑
ble equations using the fuzzy metric consistent with our pro‑
posed fuzzy order [10]. Therefore, we used the least squares 
fitting method, obtaining a = 6.805 and a standard deviation 
σ(a) = 0.081. We take Δa = 2σ(a) as the fuzzy uncertainty. 
A consistent fuzzy fitting method should be developed using 
the fuzzy metric.

The coefficient β describes the theoretical dependence of 
field induction on the generator voltage. According to equa‑
tion (13), the budget of relative errors is:

	 	

The value of n0 was determined by measuring the length 
occupied by N = 40 turns, resulting in l = 40 mm ± 0.4 mm; 
therefore:  = 0.01. The inductance L was measured 
using an inductance meter, yielding L = 1.1 mH ± 0.01 mH, 
so  = 0.01. The frequencies were read from the generator, 
and therefore frequency uncertainty is much lower than for 
the other components, so it does not occur in these formulas.

According to the principles resulting from the addition 
of fuzzy sets, if the components of errors are described by 
rectangular fuzzy sets, then the cross-section of the fuzzy 
set that is the sum of these sets is the algebraic sum of the 
cross-sections, and the error propagation principle is consist‑
ent with interval arithmetic:

(20)	
	

The value of the magnetic field induction is B =  . The 
source of the measured field was an air coil with unknown 
parameters (which are not essential for this measurement), 
powered by a generator producing a sinusoidal signal at a 
frequency of f = 10 kHz.

Using a digital oscilloscope, a series of RMS voltage 
measurements were taken for a single frequency and a sin‑
gle generator voltage. Variability in voltage readings was ob‑
served, likely caused by field disturbances. By applying the 
algorithm shown in Figure 1 (and below the picture) for the 
series of RMS voltages, we obtained the membership func‑

tion depicted in the figure. The membership function is not 
symmetrical and does not correspond to a Gaussian distri‑
bution. Calculations using this method do not require any 
assumptions about the shape of distribution but do require 
assumptions about the t-norm, which corresponds to the cop‑
ula function. Uncertainty calculations using the probabilistic 
method are usually performed under the assumption that the 
distributions are normal and with hidden assumptions about 
the correlation of random variables describing the compo‑
nents of errors in the error budget. It is also assumed that 
there are no correlations within the data set on the basis of 
which type A uncertainties are determined. Therefore one 
can assumed that the standard deviation of the mean σ(XAV 
) is equal to σ(XAV) = , which requires inde‑
pendence of events.

As seen in figure 4, the α-cut of the membership function 
of the average value is the interval [1.806, 1.812]. The fuzzy 
uncertainty is equal to the radius of this interval; therefore, 
ΔU = 0.003 V, and the relative uncertainty is:  = 0.0017. In 
this experiment, voltage measurement errors are the small‑
est component and can be neglected. Still, we will write down 
the general formulas for the uncertainty of magnetic field 
measurement:

(21)	

The voltage measurement error component is type A, while 
the others are type B. In the fuzzy sets model, combining 
type A and type B uncertainties is arithmetic regardless of 
the t-norm. This is a significant difference compared to the 
GUM algorithm, which treats type A and B error components 
as independent random variables, which raises considera‑
ble concerns. Ultimately, the relative uncertainty of the field 
measurement in this experiment is 0.03, whereas the GUM 
method calculations yield approximately 0.04. It cannot be 

Fig. 4. The membership function of the output voltage, the horizon‑
tal dashed line at the level α = 0.83 indicates the cut at the level α′ 
= 
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said that the fuzzy method is better because it gives a small‑
er value, due both methods provide different interpretations.

Conclusions
In the framework of probabilistic model the measurement 

is represented by sampling from some sample space with 
some probability distribution. Sample space is a set of pos‑
sible measurement results. From the point of view of fuzzy 
model the measurement is based on comparison, as a result 
of which the degree of matching of the standards to the prop‑
erties of the measured objects is determined. The uncertainty 
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