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Dangerous items’ detection in surveillance camera images 
using Faster R‍‑CNN

Wykrywanie niebezpiecznych przedmiotów na obrazach z kamer surveillance przy użyciu Faster R-CNN

Abstract. The Faster R‍‑CNN with different backbone networks was used to detect dangerous objects in the study. The best results were obtained 
for the ResNet152 backbone. The mAP value was 85%, while the AP level ranged from 80% to 91%, depending on the item detected. An average 
real‍‑time detection speed was between 11 and 13 FPS. Both the accuracy and speed of the model allow it to be recommended for use in public 
security monitoring systems aimed at detecting potentially dangerous objects.

Streszczenie. W badaniach, do wykrywania niebezpiecznych obiektów wykorzystano sieć Faster R‍‑CNN z różnymi sieciami szkieletowymi. Naj-
lepsze wyniki uzyskano dla sieci szkieletowej ResNet152. Wartość mAP wyniosła 85%, natomiast poziom AP wahał się od 80% do 91%, w za-
leżności od wykrywanego obiektu. Średnia prędkość wykrywania w czasie rzeczywistym wynosiła od 11 do 13 FPS. Zarówno dokładność, jak 
i szybkość modelu pozwalają rekomendować go do wykorzystania w systemach monitorowania bezpieczeństwa publicznego, mających na celu 
wykrywanie potencjalnie niebezpiecznych obiektów.
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Introduction
In the recent years, the problem of a growing number of inci-

dents of violation of public security has become apparent. This 
is very well expressed by a statistic posted on the Statista web-
site, showing the number of incidents involving active shooters 
in the United States between 2000 and 2022 (Fig. 1a). It should 
be noted that such incidents have also occurred with other 
types of items (e.g., knives, machetes, baseball bats). Con-
sidering the type of weapon used in the aforementioned acts 
of violence, various types of firearms (guns, rifles, shotguns) 
dominate here, but knives and various types of cutting tools 
(e.g., machetes) are also present. Figure 1b shows the num-
ber robberies in the United States in 2022, by weapon used.

In a report titled A Study of Active Shooter Incidents in the 
United States Between 2000 and 2013, the FBI identified 7 
locations where the public is most vulnerable to security inci-
dents [1]. These locations include: open space, commercial 
areas, educational environments, residences, government 
properties, houses of worship, health care facilities. Figure 2 
shows the number of active shooter incidents that occurred 
at the mentioned locations in the United States in 2022. The 
summary in Figure 2 does not include incidents involving other 
types of weapons, which also occurred. A potential opportu-
nity to prevent acts of violence is provided by intelligent vision 
systems using surveillance cameras installed in public places. 
The images acquired by these cameras can be analysed for 
dangerous objects brought in by people. If such items are de-
tected, the appropriate services (police, facility security, etc.) 
can be notified early enough. In this way, the chance can be 
increased to prevent a potential act of violence. Great opportu-
nities are offered here by deep convolutional neural networks, 
which are successfully used to detect various types of objects.

Among other applications, deep networks are used to 
automatically identify dangerous objects from X‍‑ray images 
during airport security checks. Gao et al. proposed their own 
convolutional neural network model based on oversampling 
for detecting from an unbalanced dataset such objects as ex-

plosives, ammunition, guns and other weapons, sharp tools, 
pyrotechnics and others [3]. In contrast, Andriyanov used 
a modified version of the YOLOv5 network to detect ammuni-
tion, grenades and firearms in passengers’ main baggage and 
carry‍‑on luggage [4]. In the proposed solution, the initial de-
tection is carried out by the YOLO model, and the results ob-
tained are subjected to final classification by the VGG‍‑19 net-
work. A number of models have also been developed for use 
in monitoring systems for public places. Gawade et al. used 
a convolutional neural network to build a system designed to 
detect knives, small arms and long weapons. The accuracy 
of the built model was 85% [5]. Some authors propose their 
own original algorithms. One example is the PELSF‍‑DCNN 
algorithm for detecting guns, knives and grenades [9]. Ac-
cording to the authors, the accuracy of their method is 97.5% 
and exceeds that of other algorithms. In contrast, Jang et al. 
proposed autonomous detection of dangerous situations in 
CCTV scenes using a deep learning model with relational 
inference [11]. The authors defined a baseball bat, a knife, 
a gun and a rifle as dangerous objects. The proposed method 
detects the objects and, based on relational inference, deter-
mines the degree of danger of the situations recorded by the 
cameras. Research on detecting dangerous objects is also 
being undertaken to protect critical infrastructure. Azarov et 
al. analysed existing real‍‑time machine learning algorithms 
and selected the optimal algorithm for protecting people and 
critical infrastructure in large‍‑scale hybrid warfare [12].

One of the challenges in object detection is the detector’s 
ability to distinguish small objects during hand manipulation. 
Pérez‍‑Hernández et al. proposed improving the accuracy and 
reliability of detecting such objects using a two‍‑level technique 
[13]. The first level selects proposals for regions of interest, and 
the second level uses One‍‑Versus‍‑All or One‍‑Versus‍‑One bi-
nary classification. The authors created their own dataset (gun, 
knife, smartphone, banknote, purse, payment card) and fo-
cused on detecting weapons that can be confused by the de-
tector with other objects. Another problem is the detection of 
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metal weapons in video footage. This is difficult because the 
reflection of light from the surface of such objects results in 
a blurring of their shapes in the image. As a result, it may be 
impossible to detect the objects. Castillo et al. developed an 
automatic model for detecting cold steel weapons in video im-
ages using convolutional neural networks [14]. The robustness 
of this model to illumination conditions was enhanced using so
‍‑called brightness‍‑controlled preprocessing (DaCoLT) involv-
ing dimming and changing the contrast of the images during 
the learning and testing stages. The authors of an interesting 
paper in the field of dangerous object detection are Yadav et al. 
[15]. They made a systematic review of datasets and traditional 
and deep learning methods that are used for weapon detection.

●	 performance evaluation of the 5 different neural net-
works used as a backbone in the Faster R‍‑CNN de-
tector;

●	 determine the values of the most important hyperparam-
eters of the Faster R‍‑CNN training process;

●	 build a Faster R‍‑CNN detector recommended for use in 
a public place monitoring system and test its effectiveness 
under real conditions;

●	 make available on the GitHub platform an implementa-
tion of the Faster R‍‑CNN, which together with the shared 
dataset makes it possible to reproduce the experiments 
conducted.

Fig. 1. Number of active shooter incidents in the United States from 2000 to 2022 (a) and number of robberies in the United States in 2022, 
by weapon used (b). Source: https://www.statista.com

Fig. 2. Number of robberies in the United States in 2022, by location category [2]

a) b)

The authors highlighted the problem of identifying the spe-
cific type of firearm used in an attack (so‍‑called intra‍‑class 
detection). The paper also compares the strengths and weak-
nesses of existing algorithms using classical and deep machine 
learning methods used to detect different types of weapons.

Most public‍‑use facilities (schools, train stations, stores, 
etc.) already use functioning monitoring systems. Therefore, 
an interesting proposal may be a simple and low‍‑cost solution 
to integrate into these systems a model based on the Faster 
R‍‑CNN architecture, which would be trained to detect dan-
gerous items in humans.

The most important contribution of this work is as follows:
●	 build and make available on the Zenodo platform a data-

set dedicated to detecting dangerous items;

The Related Works section reviews works that has attempt-
ed to use Faster R‍‑CNNs to detect dangerous objects. The Ma-
terials and Methods section briefly describes the Faster R‍‑CNN 
used and characterises the object detection quality measures 
used and how the dataset was prepared. The Results section 
contains results of the training and evaluation processes. The 
Discussion section evaluates the results obtained and com-
pares them with the results of other authors. It also describes 
the effects of testing the best model using a webcam. The en-
tire work ends with a summary in the Conclusions section.

Related Works
There are many works that have addressed the problem 

of detecting dangerous items using the Faster R‍‑CNN archi-
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tecture. The following section will review selected solutions. 
An interesting proposal designed for automatic weapon de-
tection is an ensemble of convolutional neural networks with 
different architectures. Haribharathi et al. used several pipe-
lined convolutional neural networks [6]. According to the au-
thors, this solution gives a 5% increase in accuracy, sensi-
tivity and specificity compared to other solutions (RetinaNet, 
YOLOv7, SSD, etc.). Kambhatla et al. conducted a study on 
automatic detection of pistol, knife, revolver and rifle using 
YOLOv5 and Faster R‍‑CNN [7]. Pruning and ensembling 
techniques were applied to YOLOv5 to increase their speed 
and efficiency. YOLOv5 models achieved the highest score of 
78% with an inference speed of 8.1 ms. However, the Faster 
R‍‑CNN models achieve the highest AP score of 89%. The 
work of Jain et al. implemented automatic weapon detection 
using SSD and Faster R‍‑CNN algorithms [8]. The proposed 
implementation uses two types of datasets – images pre
‍‑labeled in automatic manner and manually labeled images. 
Both algorithms achieve good accuracy, but, the authors 
say, their application in real‍‑world situations may be based 
on a trade‍‑off between speed and accuracy. A novel system 
for automatic detection of handguns in video footage for sur-
veillance and control purposes is also presented in [10]. The 
best results there were obtained for a model based on Faster 
R‍‑CNN trained on its own database.

The authors report that in 27 out of 30 scenes, the model 
successfully activates the alarm after five consecutive posi-
tive signals with an interval of less than 0.2 seconds. The 
purpose of the system proposed by Vijayakumar et al. is 
to detect the presence of weapons, identify their type, and 
capture images of attackers [24]. A dataset consisting of 5 
types of weapons was built: axe, knife, pistol, rifle and sword. 
Based on this dataset, the Faster R‍‑CNN and YOLOv4 mod-
els were built. The YOLOv4 model provided a mAP score 
of 96.04% and 19 FPS with an average accuracy of 73%. 
The Faster R‍‑CNN model achieved an average accuracy of 
71%. An interesting solution is a weakly supervised object 
detection algorithm that learns to detect the orientation of 
bounding boxes based on frames aligned to the image axis 
[25]. This algorithm differs from existing solutions because, 
unlike them, it does not require the presence of oriented 
bounding boxes. The algorithm uses 2 stages of training. 
The goal of stage 1 is to predict frames aligned with the 
image axis, while stage 2 predicts the orientation of these 
frames. Between these two stages, the orientation propos-
al generation and ROI pooling modules extract features in-
variant to orientation. To evaluate the algorithm, the authors 
built a dataset of 11,000 pistol and rifle images. Hnoohom 
et al. used SSD MobileNet‍‑V1, EfficientDet‍‑D0 and Faster 
R‍‑CNN Inception Resnet‍‑V2 to detect weapons in a CCTV 
Surveillance System [26]. They conducted the experiments 
using 2 publicly available data sets: the IMFDB (Internet 
Movie Firearms Database) and ARMAS dataset. The au-
thors obtained the best results for the Faster R‍‑CNN model. 
The subject of weapon detection using CCTV is the work of 
González et al., in which the authors used images acquired 
with a CCTV camera and artificially generated images [27]. 
They used the Faster R‍‑CNN model with ResNet50 as the 
backbone network, which allowed inference time of 90 ms. 
Based on this, the authors make conclusions about the im-
pact of artificial datasets on the training of weapon detection 

models and point out the main limitations of such systems. 
Bhatti et al. conducted a study aimed at minimizing the num-
ber of false‍‑positive and false‍‑negative cases when detect-
ing pistoles [28]. For this purpose, they built own dataset 
based on various repositories available on the Internet and 
self‍‑recorded images. The pistol class included a pistol and 
a revolver, while the second one (confusion class) included 
a mobile phone, metal detector, selfie stick, wallet, purse, 
et al. On this basis, the authors tested many algorithms, in-
cluding: VGG16, InceptionV3, Inception‍‑ResnetV2, SSD
‍‑MobileNetV1, Faster R‍‑CNN Inception‍‑ResnetV2, YOLOv3 
and YOLOv4. They obtained the best results for the YOLOv4 
model, which yielded an F1 of 91% and an average precision 
of 91.73%. The problem of detecting guns and knives was 
also addressed by Fernandez‍‑Carrobles et al. [29]. They 
proposed a weapon and knife detection system based on the 
Faster R‍‑CNN model. The authors compared 2 approach-
es, in which they used GoogleNet and SqueezeNet archi-
tectures as the backbone network, respectively. For gun 
detection, the best result was obtained for the SqueezeNet 
architecture, achieving AP=85.44%. For knife detection, the 
GoogleNet architecture achieved an AP of 46.68%. Sagar et 
al. proposed a solution for detecting weapons from images 
captured by CCTV systems [30]. The authors created their 
own dataset consisting of pistols and rifles. On this basis, 
they compared the performance of a convolutional neural 
network, SSD, YOLOv3 and Faster R‍‑CNN. Experimental 
results showed better performance of Faster RCNN com-
pared to other architectures. The overall accuracy in this 
case was 99.1%.

Most of the previously presented results relate to datasets 
containing different categories of objects that are not strictly 
focused on the problem of detecting dangerous objects. In 
addition, the results presented are overestimated because 
a significant portion of the images in the collections used to 
build and test the models represent the objects themselves 
to be detected. They are not in the hand of any person, are 
large enough and perfectly visible. Consequently, the detec-
tor has little problem detecting such objects correctly and the 
reported detection precision is high. Such an approach miss-
es the purpose of the research, which is to detect objects in 
the hands of people (potential attackers). Such objects are 
usually smaller, partially obscured and less visible, making 
them more challenging for the detector.

Against this background, this research stands out be-
cause it provides an insight into the construction of an object 
detector using a more specialised data set, which increases 
the trustworthiness and significance of the results obtained. 
The dataset was prepared in such a way that it contains items 
that are most often applied in acts of violence and violation 
of public safety, these are: baseball bat, gun, knife, machete 
and rifle. So, one can say that a dataset dedicated to the 
task of detecting potentially dangerous objects was built and 
used. It is also important that objects are presented with dif-
ferent quality, namely: clearly visible, partially obscured, small 
(longer viewing distance), blurred (worse sharpness) and 
poorly lit. As a result, the dataset better reflects real‍‑world 
conditions and the results obtained are more trustworthiness. 
The built dataset is publicly available to a wide range of re-
searchers who are potentially interested in using it in own 
research. An additional contribution of this work is to show 
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the possibility of using the popular Faster R‍‑CNN architec-
ture to detect dangerous objects by public place monitoring 
systems. The conducted experiments have shown that this 
kind of detector is characterized by low hardware require-
ments and high accuracy, which allows it to be recommended 
for the same or similar applications as those included in the 
subject of this research.

Materials and Methods
The purpose of the research the results of which are pre-

sented in this paper was to build a model suitable for use in 
monitoring systems for public places. The objects monitored 
by such systems are usually people who move relatively slow-
ly within the observed area. Therefore, the frequently used 
operating speed of such systems, amounting to several FPS, 
is quite sufficient. Taking this into account, the basic require-
ment for the model was high accuracy in detecting objects, 
especially small objects. The assumption made in the study 
was that the model would detect a specific set of potential-
ly dangerous objects, such as baseball bat, gun, knife, ma-
chete, rifle. Comparing the size of these objects with the size 
of the monitored scene, there is no doubt that they are small 
objects, occupying a negligible portion of the image frame. 
Taking into account the requirements formulated earlier, the 
Faster R‍‑CNN was chosen. This was due to the fact that, on 
the one hand, this type of network copes well with the de-
tection of small objects, and on the other hand, it allows to 
achieve a processing speed of several dozen FPS, which is 
sufficient for use in monitoring systems.

Faster R‍‑CNN
The genesis of the Faster R‍‑CNN is related to the devel-

opment of the R‍‑CNN by R. Girshick et al. [16]. This network 
offered higher accuracy compared to previous traditional ob-
ject detection methods, but its main drawback was its low 
speed. For each image, the R‍‑CNN generated approximate-
ly 2000 region proposals of various sizes, which were then 
subjected to feature extraction using a convolutional network 
[17–19]. In 2015, R. Girshick proposed to improve the R‍‑CNN 
and introduced a new network called Fast R‍‑CNN [20]. In-
stead of extracting features independently for each ROI, this 
type of network aggregated them in a single analysis of the 
entire image. In other words, the ROIs belonging to the same 
image shared computation and working memory. The Fast 
R‍‑CNN detector proved to be more accurate and faster than 
previous solutions, but it still relied on the traditional method 
of generating 2000 region proposals (Selective Search meth-
od), which was a time‍‑consuming process [21].

The problem of the temporal efficiency of the Fast R‍‑CNN 
was the reason for the development of a new detector called 
Faster R‍‑CNN by S. Ren et al. [22]. It improved the detection 
speed of Fast R‍‑CNN by replacing the previously used Se-
lective Search method with a convolutional network known 
as a Region Proposal Network (RPN). Figure 3 shows the 
architecture of the Faster R‍‑CNN detector, and its operation 
can be described as follows:
1.	 A convolutional neural network takes an input image and 

generates a map of image features on its output.
2.	 The feature map is passed to the input of the RPN at-

tached to the final convolutional backbone layer. The RPN 
acts as an attention mechanism for Fast R‍‑CNNs. It tells 

you which region to look out for in relation to the potential 
presence of the object.

3.	 The feature map is then passed to the ROI pooling layer 
to generate a new map with a fixed size.

4.	 At the end of the process, the fully connected layers per-
form a region classification and a regression of the bound-
ing box position.

Fig. 3. Faster R‍‑CNN [22]

The RPN takes input from a pre‍‑trained convolutional 
network (e.g., VGG‍‑16) and outputs multiple region pro-
posals and predicted class labels for each of them. Re-
gion proposals are bounding boxes based on predefined 
shapes that are designed to speed up the region proposal 
operation. In addition, a binary prediction is used, indicat-
ing the presence of an object in a given region (the so
‍‑called objectness of the proposed region) or its absence. 
Both networks (RPN and backbone) are trained alternate-
ly, which allows you to tune parameters for both tasks at 
the same time.

The operation of the RPN network is explained in more 
detail in Fig. 4. The reception window is moved over the 
received feature map. For each position of this window, k 
ground‍‑truth boxes of different sizes and proportions are 
created and anchored to the window, as shown in Fig. 4. In 
this way, multiple object suggestions are generated, each 
consisting of 4 coordinates of the ground‍‑truth box and 2 
values of the probability of the presence of an object in the 
box and its absence. When generating a large number of 
region proposals, many of them may overlap and corre-
spond to the same object. To avoid this redundancy, the 
NMS (Non Maximum Suppression) method is used. This 
method orders the anchor boxes based on their objectivity 
index values and selects the top N of them with the highest 
scores. Thanks to this, the final selected proposals are ac-
curate and do not overlap. The remaining anchor boxes are 
suppressed, and the selected boxes are considered pos-
sible region proposals. Then, these proposals are passed 
to the ROI pooling layer to create fixed‍‑size feature maps. 
Further operation of the detector, based on fully intercon-
nected layers is identical to that of the Fast R‍‑CNN net-
work [21].
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The introduction of the RPN has significantly reduced 
the number of regions proposed for further processing. This 
number was no longer equal to 2000, as in the case of Fast 
R‍‑CNN, but was several hundred, depending on the com-
plexity of the input images. This directly reduced training and 
prediction times and enabled the Faster R‍‑CNN detector to 
be used in near real time.

Assessing the quality of object detectors
Most indexes for assessing the quality of object detection 

are based on two key concepts, these are prediction confi-
dence and Intersection over Union (IoU). Prediction confi-
dence is a probability estimated by a classifier that a predict-
ed bounding box contains an object. IoU, on the other hand, 
is a measure based on the Jaccard index that evaluates the 
overlap between two bounding boxes – the predicted (Bp) 
and the ground‍‑truth (Bgt). With IoU, it is possible to deter-
mine whether the detection is correct or not. The measure is 
the area of overlap between the predicted and ground‍‑truth 
frames divided by the area corresponding to the sum of the 
two frames (Fig. 5).

●	 the predicted class is the same as the class correspond-
ing to the ground‍‑truth box;

●	 the predicted bounding box has an IoU value greater than 
the detection threshold.
Depending on the metric, the detection threshold is usu-

ally set to 50%, 75% or 95%.
False Positive (FP). This is a false detection and occurs 

when either of the last two conditions is not met.
False Negative (FN). This situation occurs when the pre-

diction confidence is lower than the detection threshold (no 
ground‍‑truth box detected).

True Negative (TN). This result is not used. During ob-
ject detection, there are many possible bounding boxes that 
should not be detected in the image. So, a TN value would 
mean all possible bounding boxes that were not correctly de-
tected (there are a lot of them in the image).

The detection results allow calculating the values of 2 key 
quality measures, which are precision and sensitivity. Preci‑
sion is an ability of the model to detect only correct objects. 
It is a ratio of the number of true positive (correct) predictions 
to the number of all predictions (1):

� (1)

Recall determines the model’s ability to detect all valid 
objects (all ground‍‑truth boxes). It is a ratio of the number of 
true positive (correct) predictions to the number of all ground
‍‑truth boxes (2):

� (2)

Precision‍‑recall curve. One way to evaluate the perfor-
mance of an object detector is to change the level of detection 
confidence and plot a precision‍‑recall curve for each class of 
objects. An object detector of a certain class is considered 
good if its precision remains high as the recall increases. This 
means that if the detection confidence threshold changes, 
the precision and recall will still remain high. Put a little dif-
ferently, a good object detector detects only the right objects 
(no false‍‑positive predictions means high precision) and de-
tects all ground‍‑truth boxes (no false‍‑negative predictions 
means high recall).

Average precision. Precision‍‑recall curves often have 
a zigzag course, running up and down and intersecting each 
other. Consequently, comparing curves belonging to different 
detectors on a single graph becomes a difficult task. There-
fore, it is helpful to have an average precision (AP), which is 
calculated by averaging the precision values corresponding 
to sensitivities varying between 0 and 1. The average preci-
sion is calculated separately for each class. There are 2 ap-
proaches to calculating average precision. The first involves 
interpolating 11 equally spaced points. The second approach, 
introduced in the 2010 PASCAL VOC competition, involves 
interpolating all data points. The average precision is cal-
culated for a specific IoU threshold, such as 0.5, 0.75, etc.

The 11‍‑point interpolation approximates the precision
‍‑recall curve by averaging the precision for a set of 11 equally 
spaced recall levels [0, 0.1, 0.2,…, 1] (3):

� (3)

Fig. 4. Region Proposal Network (RPN) [22]

Fig. 5. Illustration of IoU parameter for predicted box Bp (blue) and 
ground‍‑truth box Bgt (red)

Prediction confidence and IoU are used as criteria for 
determining whether object detection is true positive or false 
positive. Based on these, the following detection results can 
be determined:

True Positive (TP). A detection is considered true posi-
tive when it meets three conditions:
●	 the prediction confidence is greater than the accepted 

detection threshold (e.g., 0.5);
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where the interpolated precision at a specific recall level r is 
defined as the maximum precision occurring for the recall 
level r ’ ≥ r (4):

� (4)

In the second method, instead of interpolation based on 
11 equally spaced points, interpolation for all points is used 
(5):

� (5)

where r1,r2,…,rn are the recall levels (in ascending order) at 
which the precision is interpolated (Fig. 6).

Preparing the dataset
In order to gather the dataset, a number of repositories 

available on the Internet that offer free access to the collected 
resources were searched. During this process, care was tak-
en to ensure that the images presented a variety of situations 
recorded by surveillance cameras installed in public places. 
As a result, 5 categories of images were included in the data-
set, as shown in Fig. 7. These are: clearly visible objects, par-
tially covered objects, small objects, poor object sharpness 
and poor object illumination. As part of the image’s prepa-
ration for the study, they were scaled (and cropped where 
necessary) so that the smaller side was no shorter than 600 
pixels and the larger one was no longer than 1,000 pixels.

This operation was conditioned by the requirements of the 
Faster R‍‑CNN. The next stage of data preparation was image 
labelling. This activity consisted of marking the detected ob-
jects on the images using bounding boxes. Label Studio was 
used for this purpose [23]. The image annotations were saved 
in the Pacal VOC format, according to which the description 
about each image is included in the corresponding XML file.

The full dataset contained 4,000 images. This set was 
randomly divided into training set (75% of the full set) and test 
set (25% of the full set). As a result, the training set contained 
3,000 images, and the test set – 1,000. Figure 8 details the 
number of detected objects in each of the aforementioned sets. 
The dataset was made available on the Zenodo platform1.

Results
Training process

During training, 5 architectures of the pre‍‑trained backbone 
networks were used: ResNet50, ResNet101, ResNet152 and 2 
VGG‍‑16 networks differing in the pre‍‑trained weights (VGG‍‑16 
Caffe and VGG‍‑16 Pytorch). During the model’s construction 
stage, 30 training epochs were used. While the first 15 epochs, 
the learning rate was 10‒3, and during the next 15 epochs its 
value was 10‒4. After each epoch, the mean average precision 
(mAP) of the model was calculated based on the test set. At the 
same time, the weights obtained in a given epoch were saved, 
so it was possible to select the best set of weights after the en-
tire training process was completed. The implementation of the 
Faster R‍‑CNN used in the experiments has been made avail-
able on the GitHub platform2. Table 1 collects the values of the 
more important hyperparameters used in the training process.

The images belonging to the training set were charac-
terized by a great diversity. The detected objects were pre-
sented at different size scales, with different angles of rota-
tion and different horizontal and vertical displacement within 
the image frame. In addition, the images were characterized 
by different levels of sharpness and brightness, and some of 
the detected objects were partially covered by other objects. 
Given these features and a relatively large number of objects 
belonging to each class, additional augmentation was aban-
doned at the model training stage.

A computer with Windows 11 64‍‑bit operating system, 
Intel Core i7‒12650H 2.70 GHz processor and 32 GB RAM 
was used to train the models. PyTorch 2.1.2 platform and the 
Python 3.10 programming language were employed. Calcula-
tions were performed using the GPU (NVIDIA GeForce RTX 
1  https://zenodo.org/records/11582054
2   https://github.com/zomiotek/Faster‍‑R‍‑CNN‍‑for‍‑Dangerous‍‑Items
‍‑Detection

Fig. 6. Precision‍‑Recall curves original and interpolated

Mean AP. Average precision covers only one class, while 
object detection mostly involves multiple classes. Therefore, 
mean average precision (mAP) is used for all K classes (6):

� (6)

Inference time. Inference time is a  time it takes for 
a trained model to make a prediction of new, previously un-
known data on a single image. When detecting objects in 
video sequences, in addition to inference time, a second pa-
rameter is often used, namely the frame rate per second 
(FPS). This parameter indicates the frequency at which infer-
ence is performed for successive frames of the video stream. 
The choice of object detection model

depends on the specific requirements of the application. 
Some of them favour accuracy over speed (as in this re-
search), while others prefer faster processing, especially in 
real‍‑time applications. Consequently, researchers and devel-
opers often use FPS as a critical factor when deciding which 
model to implement for a particular use case. Be aware that 
the FPS value depends on the inference time, but also on the 
duration of additional operations, such as image capture, pre
‍‑processing, post‍‑processing, displaying the results on the 
screen, etc.. The values of inference time and FPS depend 
on the architecture of the model and the hardware/software 
platform on which the model was run.
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3060 Laptop GPU, 6 GB GDDR6), the CUDA 11.8 platform 
and the cuDNN 8.9.6 library. Table shows the total training 
time of each of the five models built.

Model evaluation
Based on the test set, 5 models differing in backbone net-

work were evaluated. The test set was balanced, as was the 
full dataset. The percentage of each object class in it was 
about 20% (Fig. 8c). Figure 9 shows precision‍‑recall plots 
for each object category. The performance of a given model 
is better the longer a high precision value is maintained with 
an increasing recall value. In the graph, this is manifested in 
such a way that the precision‍‑recall curve runs closer to the 
point with coordinates (1, 1). The graphs shown in Fig. 9 in-
dicate that when detecting baseball bat, knife and machete, 
the best performance was achieved by models based on 
ResNet101 and Resnet152. In contrast, for gun and rifle, the 
model based on ResNet152 was the best.

Figure 10 shows bar graphs reflecting the average pre-
cision of detection of different object categories by each 
model. The gun was detected with the highest precision by 
ResNet152 (AP0.5=91.3%). The same object was detected 
with slightly lower precision by ResNet101 (AP0.5=89.7%). 
Third place went to gun detection accuracy by ResNet50

(AP0.5=89.5%). The worst results were for a machete de-
tected by VGG16_PyTorch (AP0.5=68.5%) and a knife detect-
ed by VGG16_PyTorch (AP0.5=68.3%).

Bar graphs showing the value of the mean average preci-
sion of detection of all 5 object classes are shown in Fig.  11. 

Table1. Hyperparameter values used during the models training 
process

Name Value

Epochs 30

RPN mini‍‑batch 256

Proposal batch 128

Object IoU threshold 0.5

Background IoU 
threshold

0.3

Dropout 0.0

Loss function multi‍‑task loss function*

Optimizer stochastic gradient descent (SGD)

Learning rate
10‒3 (epochs 1‒15), 10‒4  

(epochs 16‒30)

Momentum 0.9

Weight‍‑decay 5×10‒4

Epsilon 10‒7

Augmentation –
�*  multi‍‑task loss function combines classification and regression 
losses. The meaning of the selected hyperparameters: RPN mini
‍‑batch – the number of ground truth anchors sampled for training 
at each step; proposal batch – the number of region proposals to 
sample at each training step; object IoU threshold – object IoU 
threshold between an anchor and a ground truth box above which 
an anchor is labelled as an object (positive) anchor; background 
IoU threshold – background IoU threshold below which an anchor 
is labelled as background (negative).

Fig. 7. Categories of images included in the dataset: a) objects clearly visible; b) objects partially covered; c) small objects; d) poor objects 
sharpness; e) poor objects illumination

a)

b)

c)

d)

e)
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The best result was achieved by ResNet152 (mAP=85%), 
a  slightly worse mAP value (84.5%) was achieved by 
ResNet101. The average precision of the other models 
was: 81.8% (ResNet50), 78.3% (VGG16_Caffe) and 77.4% 
(VGG16_PyTorch).

Model evaluation was performed on the same computer 
as the network training (computer specifications are given in 
the Training process section). The average inference time 
per image frame ranged from 74 ms for VGG‍‑16_Caffe and 
VGG‍‑16_Pytorch to 101 ms for ResNet152, depending on 
the topological depth of the backbone network used (Fig. 12).

Discussion
Assessment of the results obtained

Figure 13 shows an example of the results obtained using 
the ResNet152 model. The analysed images could be divided 
into several categories, depending on the presentation of the 
detected objects. The first category included images with ob-
jects that were clearly visible (Fig. 13a), which were detected 
with 100% accuracy, regardless of their size. Objects that 
were partially hidden in the hand (gun, knife) or partially ob-
scured by body parts of the subject were detected with simi-
lar accuracy (Fig. 13b). In the images belonging to the third 
category, the detected objects were presented on a smaller 
scale because they were further away from the camera (Fig. 
13c). Again, the model did very well in detecting them, as 
shown by the predicted bounding boxes in red. The next type 
of images had poorer sharpness, as a result of which the de-
tected objects were less clear than in the other images (Fig. 
13.d). Detection confidence here was not 100%, as for the 
previous categories of images. There were also greater differ-
ences in localization between the predicted bounding boxes 
and the ground‍‑truth boxes. However, despite the more dif-
ficult conditions, the model performed very well in detecting 
all classes of objects. In most cases, detection confidence 

exceeded 90%. The last category of images presented the 
detected objects in poorer lighting, resulting in darker images 
and less visible objects (Fig. 13e). Despite the more difficult 
conditions, the model easily detected objects that were faintly 
visible, small (gun, knife) and at a greater distance from the 
camera. The results showed that the advantage of the built 
model was that it was highly effective in detecting objects, 
regardless of the conditions of their presentation, such as the 
sharpness and brightness of the image, the size of the ob-
jects or their partial obscuration by other objects.

In order to carry out more accurate diagnostics of the 
model, a confusion matrix was constructed (Fig. 14.). It al-
lows to determine the type and number of errors made by the 
model. The most errors were made for knives and machetes. 
When detecting these items, 14 knives were recognized as 
machetes and 15 machetes were classified as knives. In this 
case, there were a number of images showing long knives 
and short machetes, which could pose a challenge for the 
detector. The confusion matrix also included cases where ob-
jects were detected when they were not actually present in 
the image (false positives) and cases where existing objects 
were not detected (false negatives). The number of false
‍‑positive cases was 112, while the number of false‍‑negative 
cases was much lower at 37. The highest number of false 
detections was observed for knives (32), machetes (27) and 
rifles (22). In order to reduce the number of such false detec-
tions, the number of training cases will be increased in the 
course of further research, and augmentation will be used, 
which was abandoned in the present study. The confusion 
matrix also made it possible to calculate the recall of the 
model. The value of this parameter was as follows: baseball 
bat – 95.3%, gun – 94.6%, knife – 90.0%, machete – 85.5%, 
rifle – 88.5% (Fig. 14b).

Comparison of results with those of other authors
Table 3 summarises the dangerous object detection re-

sults obtained by different authors using the Faster R‍‑CNN. 
Unfortunately, for various reasons, it is difficult to compare 
own results with them. Other authors have used different 
datasets in their studies. Some of them are available on the 
Internet, while others were prepared specifically for the re-
search in progress. In turn, the images used in the experi-
ments varied in terms of size, type (photographs,

video) and presentation of the objects detected (objects 
occupying the entire surface of the image and objects pre-
sented in real life – held in a person’s hand). Different meas-
ures of performance were also used (accuracy, AP, mAP, 

Fig. 8. The number of detected objects in the: a) full; b) training and c) test datasets. The share of a given category of objects in each set is 20%

a) b) c)

Table 2. Total training time

Backbone Training time

VGG‍‑16 Caffe 3h 43m 10s

VGG‍‑16 Pytorch 4h 10m 39s

ResNet50 3h 42m 9s

ResNet101 4h 17m 10s

ResNet152 6h 25m 13s
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Fig. 9. Precision-recall plots for each category of detected objects: 
a) baseball bat; b) gun; c) knife; d) machete; e) rifle

Fig. 10. Average precision of the object detection for individual back-
bone networks. The average precision was measured for an IoU 
threshold of 0.5

Fig. 11. Mean average precision for individual backbone networks

Fig. 12. Inference time averaged over 1000 test images
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Fig. 13. Example results of detecting objects presented with different quality: a) objects clearly visible; b) objects partially covered; c) small 
objects; d) poor objects sharpness; e) poor objects illumination. Ground-truth bounding boxes are drawn in green and prediction results are 
marked in red. The images have been cropped so that it is easier to compare the location of ground-truth and predicted bounding boxes

a)

b)

c)

d)

e)

a) b)
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F1‍‑score and others). However, the most commonly used 
measures were precision, mAP, recall and mAR with a stand-
ard IoU threshold of 0.50. Therefore the aforementioned 
measures were used in the summary in Table 3.

The largest number of results available relates to gun 
detection, as this is the most commonly used weapon in as-
saults and acts of violence, according to statistics. The ob-
tained precision value for this case (AP=91.3%) is in second 
place. The best precision for gun detection was obtained by 
Vijayakumar et al. – this was 96.6% [24]. Unfortunately, the 
dataset used in this study leaves much to be desired. One of 
the problems is that the authors do not provide information 
about the number of individual classes (detected objects), but 
only the number of images. According to the examples giv-
en by the authors, in most cases, one image presented one 
object to be detected. According to the data, the full set con-
tained only 120 images of pistols, of which 96 images were 
used for training and 24 for testing. In addition, a significant 
proportion of the images (60%) depicted guns without a real 
background, and only 40% showed them in real conditions 
(held in the hand). Let us remind you that collection used con-
tained 873 pistols (training set – 651, test set – 222). Both the 
number and structure of the set of images used give grounds 
for suspicion that the obtained result is overestimated. Re-
garding the recall of gun detection, the best result (AR=100%) 
was obtained by Olmos et al. [10] and González et al. [27]. 
Own result, with AR=94.6%, is in second place. It is difficult to 
compare these results, because Olmos et al. and González et 
al. obtained a recall of 100% for binary models that were de-
signed to detect only pistols (or pistols and rifles). The model 
used in the research is not binary but multiclass (it detects 5 
classes of objects), and the performance of such a model is 
usually lower than that of a binary one. In such a situation, the 
obtained recall of 94.6% is assessed as very high. Far fewer 

results are available for the detection rifles. A rifle detection 
precision of 85.3% obtained in own study is a second best 
one in the presented list. The best precision (AP=100%) was 
obtained by Vijayakumar et al. [24]. However, it seems that 
the value of the precision given by the authors is overesti-
mated due to the very limited data set. The full collection con-
tained only 135 images of rifles, of which 108 were used for 
training and 27 for testing. For comparison, a collection used 
contained 875 rifles (training set – 658, test set – 217). The 
detection recall of rifles was 88.5% in this research. Vijaya-
kumar et al. [24] achieved a higher recall of 96% in this case. 
Unfortunately, this result is not very reliable due to the size of 
the dataset used (as in the case of precision). In the case of 
knife detection precision, by far the best result (AP=80.8%) 
was obtained. It is far superior to the results obtained by oth-
er authors, which were AP=55.8% (Vijayakumar et al. [24]) 
and AP=46.7% (Fernandez‍‑Carrobles et al. [29]). Similarly, 
the best knife detection recall of 90.0% was achieved. The 
best result obtained by other authors in this case was 52% 
(Vijayakumar et al. [24]). However, it was not possible to find 
research results on the use of the Faster R‍‑CNN for the de-
tection of baseball bats and machetes. This demonstrates the 
unique nature of the dataset used in the study and the results 
obtained. In terms of average precision and average sensitiv-
ity for detecting a set of different objects, the results obtained 
were the highest (mAP=85%, mAR=90.6%).

Application of the results obtained to the prediction of new 
images

The model that proved most effective at the evaluation 
stage (ResNet152) was selected for further testing involving 
image prediction using the camera. The experiments used 
the same computer used for model training and evaluation, 
and a Tracer HD WEB008 webcam acting as a surveillance 

Table 3. Results of similar studies using Faster R‍‑CNN. A standard IoU threshold of 0.50 was used for all measures

No. in 
Refs.

Backbone mAP0.5 (%) AP0.5 (%) mAR0.5 (%) AR0.5 (%)

Own 
results

ResNet152
85.0  

(baseball bat, gun, 
knife, machete, rifle)

87.8 (baseball bat)  
91.3 (gun) 

80.8 (knife) 
79.7 (machete) 

85.3 (rifle)

90.6 
(baseball bat, 

gun, knife, 
machete, rifle)

95.3 (baseball bat) 
94.6 (gun) 
90.0 (knife) 

85.5 (machete) 
88.5 (rifle)

[6] CNN – 84.7 (gun) – 86.9 (gun)

[8] CNN 84.6 (gun, rifle) – – –

[10] VGG‍‑16 – 84.2 (gun) – 100 (gun)

[24]
80.5  

(axe, gun, knife, rifle, 
sword)

96.6 (gun)
55.8 (knife)
100 (rifle)

65.8  
(axe, gun, knife, rifle, 

sword)

61 (gun)
52 (knife)
96 (rifle)

[25] VGG‍‑16 79.8 (gun, rifle) 80.2 (gun) 
79.4 (rifle) – –

[26] Inception‍‑ResNetV2 – 79.3 (gun) – 68.6 (gun)

[27] ResNet50 – 88.12 (gun) – 100 (gun)

[28] Inception‍‑ResNetV2 – 86.4 (gun) – 89.25 (gun)

[29]
SqueezeNet – 85.4 (gun) – –

GoogleNet – 46.7 (knife) – –
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Fig. 15. The selected image frames recorded during detection of dangerous items in people entering the room: a) objects clearly visible; 
b) objects partially covered; c) small objects; d) poor objects sharpness; e) poor objects illumination. For cases a), b), d) and e) the came-
ra distance and installation height were 2.5 m. For case c) the camera distance was increased to 5 m. The original image frame size was 
800×600 pixels. In order to better present the detected objects, they were cropped to 600×600 pixels

camera. The scenario of the experiment involved monitoring 
people entering the room and detecting potentially dangerous 
objects in them. Both the distance of the camera from the en-
trance door and its installation height were 2.5 meters. Figure 
15 shows selected frames of the recorded image.

During recording, the frames were scaled to 800×600 
pixels so as to meet the Faster R‍‑CNN model’s minimum in-
put image size requirements. At this resolution, the average 
processing speed was 11 to 13 FPS. Such a speed is suffi-
cient for use in public space surveillance systems, where the 
typical processing speed of image frames is usually a dozen 
FPS. During the experiment, the vast majority of objects were 
correctly detected, and the image was played back with sat-
isfactory smoothness. Despite the correct operation of the 

model, there were image frames where objects were not de-
tected. This was mainly related to the greater distance from 
the camera and poor lighting. During further research, an at-
tempt will be made to eliminate these problems by increasing 
the number of training images taking into account the situa-
tions described above and the augmentation technique. Se-
lected excerpts from the course of the experiment are shown 
in a video made available on the Zenodo platform3.

Conclusions
As a result of the study, 5 models were built, of which 

the most effective one, based on the ResNet152 backbone, 

3  https://zenodo.org/records/12736924

a)

b)

c)

d)

e)
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achieved a mAP value of 85%. This is a very good result, if 
we take into account the specifics of the dataset used. It con-
sisted (in similar proportions) of images in which the detected 
objects were: clearly visible, partially obscured, small, indis-
tinct (partially blurred) and faintly visible (dark). This structure 
of the collection was a factor in increasing the difficulty of 
the object detection task. The evaluation conducted on the 
test set and the prediction of new images using an ordinary 
webcam showed that the ResNet152 model performs very 
well in detecting objects, regardless of the quality of the input 
image. Also, the processing speed of video frames is sat-
isfactory. In the computer system used in the experiments, 
the value of the mentioned parameter was between 11 and 
13 FPS, which gives the possibility of practical application 
of the proposed solution. The obtained results entitle to rec-

ommend the Faster R‍‑CNN with the ResNet152 backbone 
network for use in public monitoring systems, whose task is 
to detect specific objects (e.g., potentially dangerous objects) 
brought by people to the premises of various facilities. The 
research used a specific set of these objects (baseball bat, 
gun, knife, machete, rifle), but according to the goal set for 
the monitoring system, this set can be expanded or modi-
fied accordingly.

Author: dr hab. inż. Zbigniew Omiotek, Politechnika Lubelska, Ka-
tedra Elektroniki i Technik Informacyjnych, ul. Nadbystrzycka 38A, 
20‒618 Lublin, E‍‑mail: z.omiotek@pollub.pl.
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