
 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025 213

Introduction
Modern radar systems play a vital role in tracking and 

predicting the trajectories of missiles and other projectiles. 
The dynamics of missile trajectories can be influenced by 
gravitational forces, aerodynamic drag, and external dis‑
turbances, such as wind. Accurate estimation of these tra‑
jectories is essential for both civilian and defence applica‑
tions [1].

Traditional trajectory estimation methods, such as the 
Kalman filter (KF), are rooted in the assumption of a Markov 
process, where each state depends only on its immediate 
predecessor. The KF employs recursive updates to estimate 
state variables based on measurements. This method is com‑
putationally efficient; however, its accuracy is constrained 
by the incomplete incorporation of dynamic constraints and 
measurement limitations in each filter iteration [2].

An alternative formulation of the tracking problem involves 
the use of a factor graph, where the nodes correspond to the 
poses of the object at different time points and the edges rep‑
resent the constraints between these poses. Factor graphs 
provide a batch optimisation framework for smoothing prob‑
lems by modelling the entire trajectory through the simulta‑
neous consideration of all measurements and state transi‑
tions, as opposed to the recursive updates used in filtering 
approaches [3]. This smoothing‍‑based formulation allows 
factor graphs to more effectively handle nonlinear relation‑
ships and sparse observations.

Factor graphs were first introduced by Kschischang et 
al. in [4] to describe the factorisation of functions in proba‑
bilistic graphical models. These graphs were later utilized 
in the sum‍‑product algorithm for efficient marginalization. 
In robotics, many approaches extended the application of 
factor graphs to solve Simultaneous Localization and Map‑
ping (SLAM) problems efficiently [5, 6, 7]. Subsequent ad‑
vancements included techniques for handling non‍‑linear 
constraints and applying factor graphs to navigation sys‑
tems [6, 8].

Research by Kaess et al. [9] demonstrated that factor 
graphs, coupled with iterative solvers, outperform traditional 
filters in many trajectory estimation problems. Their ability 
to integrate all available measurements in a batch optimiza‑
tion framework makes them particularly suitable for scenar‑
ios involving complex dynamics and sparse observations. 
However, their use in radar‍‑based missile trajectory track‑
ing is a relatively unexplored domain, motivating this study.

The present article aims to explore the smoothing‍‑based 
solution as a viable alternative to KF approaches for the mis‑
sile tracking and landing spot estimation problem. Its scope 
encompasses the mathematical formulation of the tracking 
problem within the framework of a factor graph, the simula‑
tion of radar‍‑based missile observations, the evaluation of 
trajectory prediction and landing point estimation accuracy, 
and a comparative analysis with an Extended Kalman Filter 
(EKF), followed by a detailed analysis of the results.

Mathematical Formulation
A  factor graph is a bipartite graph used to represent 

a problem as a structure comprising two types of nodes: 
hidden variables and factors. [3] Variable nodes represent the 
variables of interest to be estimated (e.g., state estimates of 
an object’s trajectory), while factor nodes encode constraints 
(e.g., dynamic constraints) or measurements that relate to 
these variables.

Edges in a bipartite graph connect variable nodes exclu‑
sively to factor nodes, representing dependencies between 
specific variables and factors [3]. An edge from a variable 
node to a factor node indicates that the variable’s value is in‑
volved in the factor’s calculation or contributes to its outcome. 
This structure enables the decomposition of a complex global 
function into a product of simpler local functions, which facili‑
tates efficient analysis and computation.

A factor graph representing the trajectory and landing 
point estimation problem is presented in Figure 1. Each fac‑
tor models a specific aspect of the trajectory, such as the re‑

Paweł SŁOWAK
ORCID: 0000-0001-7299-9579

DOI: 10.15199/48.2025.05.45

Factor Graph‍‑Based Trajectory Estimation  
for Radar‍‑Based Missile Tracking

Estymacja trajektorii oparta na grafach czynnikowych dla radarowego śledzenia pocisków

Abstract. This study explores the application of factor graphs in missile trajectory tracking, presenting an alternative to traditional methods like the 
Extended Kalman Filter (EKF). By modeling the entire trajectory within a batch optimization framework, factor graphs enable more accurate esti-
mates by considering all available information at once. The results show that factor graphs outperform EKF across multiple scenarios. These find-
ings highlight the potential of factor graphs for precise trajectory estimation and their broader applicability to other tracking systems.

Streszczenie. Publikacja zawiera analizę możliwości zastosowania grafów czynnikowych w śledzeniu trajektorii pocisków, stanowiąc alternatywę 
dla tradycyjnych metod, takich jak rozszerzony filtr Kalmana. Grafy dwudzielne pozwalają na modelowanie całej trajektorii jako problemu optymali-
zacji, umożliwiając dokładniejsze oszacowania przez jednoczesne uwzględnienie wszystkich dostępnych informacji. Wyniki pokazują, że grafy 
czynnikowe umożliwiają dokładniejszą estymację niż rozszerzony filtr Kalmana w różnych scenariuszach. Wyniki te podkreślają potencjał grafów 
w precyzyjnej estymacji trajektorii oraz ich szersze zastosowanie w innych systemach śledzenia.

Keywords: factor graph, tracking, trajectory estimation, radar
Słowa kluczowe: graf czynnikowy, śledzenie, estymacja trajektorii, radar.



214  PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025

lationship between successive states (motion model) or the 
consistency with radar observations (measurement model). 
The factor graph includes:
1.	 Variable nodes representing the state of the missile at 

discrete time steps x0…N which comprises the informa‑
tion about its position and velocity expressed in Carte‑
sian coordinates.

2.	 Factors, which either represent a likelihood term derived 
from radar measurements z1…M (red) or a transition mod‑
el function f term encoding the dynamics of a given mis‑
sile (blue).

(4)	

where: J – sparse matrix, which can be interpreted as equiva‑
lent adjacency matrix for a bipartite factor graph,  – is the 
update to the state variables, y – residual vector formed from 
stacked residuals.

The state variables are incrementally updated, obtaining 
the linearized solution, according to

(5)	

where: j – iteration index.
The sparse matrix approach takes advantage of the un‑

derlying structure of factor graphs, where the interactions be‑
tween variables are typically sparse, meaning that each vari‑
able is influenced by only a small subset of factors.

This matrix J is constructed so that each hidden variable 
in the graph corresponds to a block of columns, each block 
of rows corresponds to a factor in the graph. Other matrix 
entries are zero unless there is an edge between the corre‑
sponding factor and hidden variable .

The matrix form is found by linearizing the error functions 
around a current estimate for a hidden variable:

(6)	

where: Fi – Jacobi matrix of the error function derived from 
dynamic constraints at step i.

 
(7)	

where: Hk – Jacobi matrix of the error function derived from 
dynamic constraints for the k‍‑th measurement.

If inverses of covariance matrices Q and R are decom‑
posed as follows into:

(8)	

(9)	

then the elements of J corresponding to dynamic constraints 
at step i is can be denoted:

(10)	

while the elements of J corresponding to k‍‑th radar measure‑
ment would equal:

(11)	

where and are weighted derivative matrices.
An example of the matrix corresponding to one of per‑

formed simulations is shown in Figure 2.
The right‍‑hand side of the normal equation (4), vector, 

is constructed using weighted residuals from dynamic con‑
straints and measurements:

Fig. 1. The graph representing the described trajectory estimation 
problem

As a factor graph expresses the joint probability distribu‑
tion of a set of variables as a product of factors, it can equiva‑
lently be formulated as an optimization problem. Specifically, 
the goal is to minimize the sum of residuals associated with 
all the factors:

For the trajectory estimation problem, this can be ex‑
pressed as:

(1)	 ,

where: χ – set of possible states, N – number of dynamic con‑
straints, f – dynamic transition vector function, – state vector 
at step, – external input vector at step, – process noise co‑
variance matrix, M – number of measurements, h – meas‑
urement vector function, –zk k‑th measurement, R – meas‑
urement noise covariance matrix,

||e||A
2 notation denotes the norm of an error vector e 

weighted by its covariance matrix A. Its usage is explained 
in equations (2) and (3), which represent cost functions de‑
rived from the factors:

 
(2)	

 
(3)	

Optimization involves finding the state configuration that 
minimizes the negative log‍‑likelihood as a weighted least
‍‑squares algorithm.

In addition to formulating the factor graph as an opti‑
mization problem, another perspective is to represent it as 
a sparse matrix. Then, the estimation task can be described 
as iteratively solving the linear system:
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(12)�  

The normal equation (4) is typically solved using the spar‑
sity leveraging methods, such as QR or Cholesky Decom‑
position [3].

QR decomposition factorizes the Jacobian matrix into an 
orthogonal matrix and an upper triangular matrix. This simpli‑
fies solving the normal equations to backward substitution, 
which is numerically stable and efficient.

Cholesky decomposition offers an alternative by factor‑
izing a matrix into a lower triangular matrix. This method is 
computationally more efficient than QR decomposition [8]; 
however, it is only applicable to square matrices, and the 
Moore‍‑Penrose pseudoinverse is often required as an inter‑
mediate step.

The proposed factor graph method was compared with 
an estimation tool built upon an EKF. This filter operates un‑
der the assumption that state transitions and measurements 
can be modelled as linear or locally linear processes, with 
Gaussian noise distributions, allowing for recursive updates 
to the state estimate and its associated uncertainty. Addi‑
tionally, the EKF leverages the Markov process assumption, 
which states that the current state depends only on the im‑
mediately preceding state, simplifying the modeling of tem‑
poral dependencies.

The EKF is a well‍‑established method, with its mathe‑
matical formulation extensively documented in the literature 
[6, 10‒13]; therefore, the equations are not included here.

Simulation
Simulated missile trajectories were generated using a bal‑

listic missile model described in [14] and implemented in 
MATLAB. This model incorporated key physical and environ‑
mental factors, including engine thrust, gravitational force, 
aerodynamic drag, and dynamic process noise. Radar ob‑
servations were simulated as vectors containing range, azi‑
muth, and elevation information. The measurement genera‑
tion process also accounted for technical constraints, such 
as maximum radar range, elevation angle limitations, and the 
probability of target misdetection.

The key simulation parameters are provided in Table 1. 
The data related to missile range and maximum altitude re‑
flect the variation resulting from different simulation runs with 
randomized flight parameters. For comparison purposes, 
data were collected from multiple realizations of each sce‑
nario, and the results were averaged to provide a compre‑
hensive evaluation.

Table 1. Parameters used in the simulation

Parameter Value Units

Common parameters

Standard deviation of 
measurement error – range

50 [m]

Standard deviation of 
measurement error – azimuth

0.3 [degrees]

Standard deviation of 
measurement error – elevation

0.5 [degrees]

Probability of detection 0.8 –

Maximum range 80 000 [m]

Maximum elevation 25 [degrees]

Sensor Update Rate 2 [Hz]

Radar coordinates [0, 0, 0] [m]

Missile launch site coordinates [16000, 5000, 0] [m]

Launch direction (azimuth 
angle)

105 [degrees]

Missile motion process noise 
intensity

70 [m2/s3]

Scenario 1 parameters

Missile range
~38 000 – 

40 000
 [m]

Missile maximum Altitude
~19 500 – 21 

000
 [m]

Scenario 2 parameters

Missile range
~64 000 – 

71 000
 [m]

Missile maximum altitude
~31 500 – 

32 000
 [m]

Scenario 3 parameters

Missile range
~72 000 – 75 

000
 [m]

Missile maximum altitude
~33 000 – 

35 000
 [m]

An example of a simulated trajectory is presented in Fig‑
ure 3.

Both the factor graph and the EKF trajectory estimation 
approaches were implemented, their performance was evalu‑
ated and compared in three operational scenarios. In the first 
scenario, the simulation was configured such that the entire 
missile trajectory was within radar range, allowing the radar 
to observe the missile’s full path. The second scenario in‑
volved a partially visible trajectory, where the missile landing 
site was located at the edge of the radar’s maximum range. 
The third and most challenging scenario featured minimal 
trajectory coverage, with only a small portion of the missile’s 
flight path remaining within radar range and below the maxi‑
mum elevation angle.

Fig. 2. The sparse matrix representing the described trajectory es‑
timation problem.
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An example of the trajectory, generated for the most chal‑
lenging scenario, and the estimation results obtained using 
the factor graph approach, along with successive trajectory 
optimization steps, is shown in Figure 4.

results clearly show that factor graphs consistently achieve 
lower RMSE values and smaller errors, particularly in the 
most challenging experimental setups with limited radar data. 
This highlights the effectiveness of factor graphs, which offer 
superior precision in estimating the missile’s full trajectory.

While the EKF method is efficient for real‍‑time applica‑
tions due to its recursive nature, its reliance on the Markov 
assumption limits its ability to incorporate long‍‑term historical 
information when making predictions. On the contrary, fac‑
tor graphs employ a batch optimization approach that con‑
siders the entire trajectory at once, leading to more accurate 
point predictions and a more comprehensive estimate, even 
with limited data.

The findings underscore the potential of factor graphs 
for radar‍‑based missile trajectory estimation, with possible 
applications extending to tracking cruise missiles with vari‑
ous motion models. Future work will focus on the real‍‑time 
implementation of this method and its integration with hard‑
ware systems to enhance operational capability. The holistic, 
smoothing‍‑based optimization approach employed by factor 
graphs offers a promising alternative to traditional methods, 
particularly for complex estimation problems in dynamic and 
constrained environments.
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Fig. 3. Simulated trajectory and measurements

Fig. 4. Trajectory estimation using factor graph‍‑based method.

Table 2. The results of accuracy comparison

Scenario 1 – last measurement AGL ~ 420 m

Estimation tool
Trajectory RMSE 

[m]
Landing error [m]

Factor graph 10.08 145.28

EKF 17.91 157.56

Scenario 2 – last measurement AGL ~ 22 500 m

Estimation tool
Trajectory RMSE 

[m]
Landing error [m]

Factor graph 19.23 763.94

EKF 30.48 1310.91

Scenario 3 – last measurement AGL ~ 32 000 m

Estimation tool
Trajectory RMSE 

[m]
Landing error [m]

Factor graph 25.39 1193.62

EKF 65.02 5296.54

Results
The accuracy of the factor graph and EKF approaches 

was compared using two criteria. First, the RMSE of the tra‑
jectory position error along the trajectory was calculated. 
Second, the mean error of the landing spot was evaluated. 
The results are presented in Table 2. The table also includes 
information on the height (above ground level, AGL) of the 
last measurement before impact.

Conclusions
This study compares the factor graph‍‑based trajecto‑

ry estimation approach with the traditional EKF method for 
missile trajectory estimation using radar observations. The 
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