
30 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025

1. Jakub PRZYDALSKI, 2. Radosław WAJMAN

ORCID: 2. 0000-0002-6372-5960

DOI: 10.15199/48.2025.05.07

Renaming a JavaScript object key while preserving its original
structure on the example of a graphical JSON editor application

Zmiana nazwy klucza obiektu JavaScript przy zachowaniu jego oryginalnej struktury
na przykładzie graficznej aplikacji edytora JSON

Abstract. The article presents the assumptions and operation of an innovative JavaScript algorithm that allowed solving the problem of renaming of
object keys while preserving their position in the JSON object tree. Achieving such functionality became possible through an imperative approach,
bypassing the built-in mechanisms of the JS language. The algorithm performs restructuring and reconstructs the document structure, avoiding time-
consuming data copying. The implementation of the algorithm enables free editing of any nested JSON structure. Based on it, a web application was
designed, which, thanks to an additional abstraction layer, allows in the graphical view navigation through the loaded JSON object structure, editing
its keys, and changing their order while safeguarding against damaging the object’s structure.

Streszczenie. Artykuł przedstawia założenia i działanie nowatorskiego algorytmu JavaScript, który pozwolił na rozwiązanie problemu zmiany nazwy
klucza obiektu, z zachowaniem jego pozycji w drzewie obiektu JSON. Uzyskanie takich funkcjonalności stało się możliwe dzięki imperatywnemu
podejściu pomijając wbudowane mechanizmy języka JS. Algorytm dokonuje restrukturyzacji oraz ponownego budowania struktury dokumentu
unikając czasochłonnego kopiowania danych. Implementacja algorytmu umożliwiła swobodną edycję dowolnej zagnieżdżonej struktury JSON. Na
jego podstawie przygotowano aplikację webową, która dzięki dodatkowej warstwie abstrakcji oferowanej w widoku graficznym umożliwia
nawigowanie po wczytanej strukturze obiektu JSON, edytowanie jej kluczy oraz zmianę ich kolejności zabezpieczając przed uszkodzeniem struktury
obiektu.

Keywords: JavaScript dictionaries, JSON, web application, graphical user interface
Słowa kluczowe: Słowniki JavaScript, JSON, aplikacja internetowa, interfejs graficzny

Introduction
Dynamic web applications require data for their

operation. Additionally, the flexibility of the solutions being
developed has necessitated the implementation of
configuration files that influence system behavior based on
needs or constraints. As these solutions have become more
standardized, they encountered challenges in standardizing
the syntax of the transmitted information. The lack of a
standard posed a risk to the stability of applications using
data from external systems, which might not be aware of
how their data is utilized by other heterogeneous
applications in a specific way.

Currently, the official standard for data representation
remains XML (Extensible Markup Language)[1], [2].
However, it is not an ideal solution, as reflected in the
multitude of alternative approaches and its declining
popularity. A detailed analysis of the popularity of various
formats - XML (the official standard), JSON (the current
leading solution) [3], [4], and other offered formats (CSV,
SOAP, YAML, ODATA, AVRO) - clearly indicates the
growing popularity of JSON, significantly surpassing other
alternatives.

JSON is a lightweight data exchange format. It boasts a
low entry barrier. The reading and writing data in this format
are easy to grasp compared to other formats like XML.
JSON was defined based on a subset of the JavaScript
language, following the Standard ECMA-262 3rd Edition -
December 1999 [5]. A thorough examination of the format is
covered in the following chapters of this work.

The established position of JSON notation has
increased demand for solutions that allow free editing and
document creation. While there are many editors currently
available for editing JSON-compliant document structures,
all existing solutions are text-based editors [6]. As JSON-
based applications continue to evolve, the need for editors
keeps growing, and many required functionalities are not
supported by the existing tools.

This situation inspired the development of a JSON
document editor with a fresh perspective - an additional
graphical user interface. The mechanism is based on

extending current solutions, allowing hybrid work between
the text-based document and the graphical view. Thanks to
an additional layer of abstraction provided in the graphical
view, users can navigate through the loaded structure and
edit its keys, reorder them without fear of damaging the
JSON object's structure. The system simplifies certain
operations from multi-step instructions to single clicks or
mouse drags, and the necessity of tracking multi-level
nesting to add a new item does not hinder document
transparency.

Achieving these functionalities became possible through
an imperative approach that bypasses built-in JavaScript
mechanisms. A new algorithm for restructuring and
reconstructing the document structure was developed,
avoiding time-consuming data copying. The implemented
solution introduces the ability to change the name and order
of object keys while preserving the content of the object. An
internet application was built, allowing users to reorder
array elements or object fields with a single mouse drag,
and the result is reflected in both the textual structure and
the saved data. The implementation leverages the Svelte
library, known for its fast display of changing data in
browsers, as opposed to popular solutions that require
maintaining auxiliary structures [7].

JavaScript limitations
The JavaScript programming language [8] lacks a built-

in mechanism for editing object keys. After analyzing the
issue and creating prototypes, several conclusions were
drawn:

The only solution that allows working directly with the
original structure after converting it to an object involves
creating a new object key, copying the modified value, and
deleting the old key. While this approach ensures the
correctness of the resulting data, it disrupts its original
structure when transformed back from text to JSON format.
Consequently, this solution was rejected due to usability
concerns.

Another potential solution would be to create a copy of
the original object field by field until encountering the edited
key, which would be created under a new name. However,

PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025 31

this process would engage the entire (sometimes large)
object for each key renaming operation, resulting in highly
inefficient performance. Likewise, this approach did not
meet the requirements of the intended system due to its
computational complexity. The computational time for
renaming the same key increases as the structure size
grows.

A solution without these drawbacks emerged through
the implementation of a restructuring and JSON object-
building mechanism based on a more imperative approach
than the built-in JSON prototype solutions in JavaScript.
The structure is created when switching to graphical mode,
and the reverse transformation to JSON format occurs
when returning to text mode or saving to a file. The
architecture developed for the project purposes allows
storing information about object fields in the appropriate
structure fields.

Fig. 1. Object field structure in the implemented architecture

By storing information about the key in a separate field
(“key”), the edition process does not affect its position or
disrupt the order of other keys. All object fields (and array
elements) are stored in an array under the key “children.”
This design allows us to avoid the need to build and
maintain paths to individual contexts. A detailed analysis of
the structure and the argumentation of the specific fields’
definition can be found in the further part of this work.

Data structure
Developing the algorithm that allows for free editing of

the JSON structure became the core of the entire project
and required a detailed analysis of the issue from many
perspectives. At the initial stage of work preparation, two
solutions turned out to be not good enough to allow full
implementation or were not optimal. The final solution, as it
was implemented, developed with new mechanisms to
cover the requirements of the implemented system.

The structure initially passed to the application is of
string type. The conversion between the string and the
JavaScript object and vice versa is done by using the built-
in methods, respectively: JSON.parse() and
JSON.stringify().

Restructuring
Working directly on a JavaScript object would prevent

the optimal implementation of the system's assumptions.
The object received after conversion from text had to be
remapped to a structure compatible with the prepared
algorithm.

All keys of the original object are renamed to the values
of the corresponding fields of the objects in the array:

Key - the value of the object key or the index number of
the array,

Type – one of the values from: null, array, object, string,
number, boolean. Checked in a specific order to distinguish
between all types present, with appropriate distinction. In
JavaScript, null, array, and object are all object type values
[9].

Each of these values forces a different handling of data,
which required the extension of the type checking algorithm
to pre-filter out null values and arrays.

Value – according to the following scheme:

• for null values, it is a value representing the
intentional absence of any value (null),

• for the array it is an empty array ([]),

• for the object, it is a value representing an
empty object ({}),

• for other types (simple types) it is the value of
the variable under the key.

Children – an array of values of children, objects with
the same fields as the parent context, or elements of an
array. It allows to define a hierarchical data structure.

Fig. 2. The restructuring method

Fig. 3. Example structure before and after restructuring

32 PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025

Identifier (id) is a value represented by a Globally
Unique Identifier. A field used when reorganizing elements
of an array or object, as a pointer to an element that
distinguishes individual elements (an index that is a
dynamic value is not suitable for this purpose).

Building the output
Working on a restructured object allows for flexible data

modification. When switching to text mode or writing to file,
the input is rebuilt. The algorithm iterates over the values of
the structure recursively. For keys that are objects, the
initial value of the output object is set to: "{}". Then, for each
child key, a lower level of the tree is built, and its value is
assigned under the key in the parent context.

For keys that are arrays, the initial value of the output
object is set to: "[]". Then, for each child element, a lower
level of the tree is built, and its value is pushed to the end of
the parent context array.

For other types, the initial value of the output object is
directly rewritten from the input object – this is equivalent to
reaching the leaf of the structure and finishing building a
given branch of the tree.

Fig. 4. Method to build the output

When all the branches of the tree reach their leaves, the

finished structure is returned to a text editor and is passed
to a text file for writing.

Graphical JSON editor

The result of the work was a system that allows to edit
JSON files and structures. The solution in the form of a web
application is offered to a wide range of users of documents
in the above format, both for commercial and non-
commercial use. The system offers two cooperating views
that allow for parallel operation in both modes, depending
on the user's needs.

The figure 5 presents a standard view offering two data
inputs on one screen as a standard JSON text document
editor.

Fig. 5. Text editor view

In the case of damage to the data structure in the text

mode, the user will be informed about syntax errors in the
structure, which at the same time limits other system
functionalities.

Nevertheless, many solutions based on a text editor
allow to freely work on uncomplicated data structures. As
the content grows, working in the graphic mode will be
much more convenient. Therefore, at any stage of

operation, the user can switch between modes, depending
on his needs – see figure 6. Then, a tree of the structure of
the loaded data will be displayed in the left navigation
panel.

The graphical editing mode provides additional
functionalities. When working on long structures with many
nests, it is possible to constrain the displayed elements with
chevrons to improve readability.

In the case of copying flattened structures (without
indentations), their readability for humans is disturbed. The
system offers the possibility of displaying data with the use
of appropriate indentations to increase readability,
regardless of the formatting of the entered data in the
graphical mode.

Fig. 6. Graphical editor view

In the event of distorting the structure with redundant or
missing indents and additional rows, the system allows to
reformat the data.

When working with complex structures, their complexity
can interfere with the ability to quickly analyze content. In
the prepared system, it is possible to set a context that
displays the details of only a given nesting, allowing to fully
focus and review the data.

The content of the main section of the application has
been stored in the so-called "store". This is a functionality of
the Svelte library, which allows to set the value of a given
variable and access it from anywhere in the system. The
value of such a section is a kind of Singleton, i.e. it will have
consistent data for any place of the call. This type of object
allows to change data, subscribe – i.e. notify about the
change of content and allows to define methods that limit
access and freedom to influence the shape of the section.
In addition to the two-way binding functionality and event
dispatcher, it is one of the three functionalities of the Svelte
library, used to transfer data between application
components.

One of the initial challenges of the developed system
was to design an architecture that would enable an optimal
algorithm for renaming the key, while maintaining the order
of keys in the object. The system offers such a mechanism.
By implementing the new data structure, changing the
name of the key consists in overwriting the value of the
"key" key for the edited context. This functionality does not
require any additional maintenance and additional data
copying in the prepared architecture. It is also possible to
change the value and type under lock and key.

Objects that are structures with variable architecture
require the ability to expand their content with additional
fields. In the case of this system, this functionality is
implemented with one click. The added base element is
immediately ready to be edited by key name, type or
assigned value.

According to the prepared architecture, adding a field to
an object comes down to adding an array element under
the key "children" in the edited context. This solution allows

PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 5/2025 33

to skip the tedious process of analyzing paths for later
building the output. At the same time, the mechanism
maintains the declared order of the object's fields.

Similarly, arrays, which are dynamic structures for
storing data, require the functionality to quickly add
elements. In this system, the user adds a base element with
the possibility of adapting it to his requirements with one
click.

In addition, standard JSON text editors do not support
changing the order of array elements, which is a desirable
functionality due to the ordered nature of such a structure.
In the graphical mode, the user can change the order of
elements using the drag and drop technique. Therefore, it
was necessary to define the "id" field storing a unique
identifier for each element. This is the only use for this field.
On its basis, the positions of the dragged elements are
identified, both in the state of holding over the zone
(consider) and after dropping (finalize).

Summary

The aim of the work was to develop an innovative
JavaScript algorithm that allowed to solve the problem of
renaming the objects’ keys while maintaining its position in
the JSON object tree. In addition to this problem, the
algorithm allowed for free editing of any nesting of the
structure, which allowed for full coverage of the
requirements for functional assumptions. An appropriate
data structure has been designed to protect against
unwanted copying of large objects. On its basis, a web
application written in TypeScript using the Svelte library was
prepared. A further goal was set to develop the system with

functionalities such as a toolbox or a TypeScript interface
generator.

The developed solution can be made available to
companies and private users for editing and creating
complex documents, ensuring the correct file structure at
every stage of shaping JSON formats. The system does not
limit the functionalities offered by solutions based on text
editors but is an additional layer cooperating in parallel to
the text editor. Text editors require the user to carefully edit
and control the actions performed for fear of damaging the
structure. The system has simplified some of the
mechanisms from multi-step instructions to single mouse
clicks or drags. The need to keep track of multi-level nesting
to add a new item will not be an obstacle to achieving
document clarity.

Authors: Jakub Przydalski, BSc is a graduate of Lodz University of
Technology. His interests lie in exploring and advancing the field of
JavaScript programming, with a particular focus on low-code and
no-code solutions. He is passionate about leveraging these
platforms to democratize software development, enabling more
people to create robust applications without extensive coding
knowledge. Additionally, he enjoys implementing various process
automations, constantly seeking innovative ways to streamline
workflows and enhance productivity.
Radosław Wajman, DSc. Ph.D. Eng. is a professor at the Institute
of Applied Computer Science at the Lodz University of Technology.
In his work, he deals with the issues in the field of software
engineering, machine learning, fuzzy inference for industrial
approach and also electrical capacitance tomography, two-phase
gas-liquid flow recognition, image reconstruction, analysis and
processing.

REFERENCES
[1] T. Arnold and L. Tilton, “Data Formats,” in Humanities Data in R: Exploring Networks, Geospatial Data, Images, and Text, Cham:

Springer International Publishing, 2024, pp. 249–275. doi: 10.1007/978-3-031-62566-4_12.
[2] P. Drzymała and H. Welfle, “Przetwarzanie dużych zbiorów danych XML z użyciem struktur relacyjno-hierarchicznych w systemie IBM

DB2,” Przegląd Elektrotechniczny, vol. 6, p. 33, 2017.
[3] A. Šimec and M. Magličić, “Comparison of JSON and XML Data Formats,” in Central European Conference on Information and

Intelligent Systems, Varaždin, 2014. Accessed: Jul. 24, 2024. [Online]. Available:
https://www.researchgate.net/publication/329707959_Comparison_of_JSON_and_XML_Data_Formats

[4] P. Drzymała and H. Welfle, “Mechanizmy wsparcia standardu JSON w celu wydajnego przechowywania i przetwarzania danych w
środowisku IBM DB2,” Przegląd Elektrotechniczny, vol. 2, p. 182, 2023.

[5] “ECMA International. (n.d.). ECMA-404 The JSON Data Interchange Standard.” [Online]. Available: http://www.json.org/
[6] T. Marrs, JSON at work : practical data integration for the web, O’Reilly Media. 2017.
[7] R. Harris, “Svelte 3: Rethinking reactivity.” Accessed: Jul. 24, 2024. [Online]. Available: https://svelte.dev/blog/svelte-3-rethinking-

reactivity
[8] D. Herman, Effective JavaScript, Pearson Education. Addison Wesley, 2012.
[9] “JavaScript data types and data structures,” MDN Web Docs, Mozilla Foundation. Accessed: Jul. 24, 2024. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

